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Abstract—In this work, we study the energy efficiency problem
in a vehicular edge computing network with delay sensitive
tasks. We aim at minimizing the total energy consumption under
the given delay constraints by jointly optimizing the offloading
decisions and the computational resources. The resulting mixed
integer non-convex problem is intractable to solve. To address
the problem, it is reformulated into an equivalent tractable form
and via relaxation it is transformed into a convex problem. Via
simulations, the performance and the offloading behaviour of
the proposed design are evaluated under various scenarios with
different setups of vehicular density and delay limits.

Index Terms—Vehicular edge computing (VEC), energy effi-
ciency, delay aware.

I. INTRODUCTION

Benefiting from the development of the Internet-of-things
(IoT) and advanced vehicle-to-everything (V2X) communi-
cation technologies, vehicles can enjoy more intelligent and
safe applications, e.g., autonomous driving and route planning.
These advance service normally require high computational
resources to process the computation-intensive and latency-
critical tasks [1]. Nevertheless, the vehicles are resource con-
strained due to their power limit, and thus it is a challenge for
them to achieve the desired quality of service and experience.
In recent years, mobile edge computing (MEC) has emerged
and fast developed. It allows the tasks with high computa-
tional and low latency requirements of the IoT devices to be
offloaded to the edge computing nodes and be accomplished
in the servers [2]–[6]. By deploying the vehicular edge com-
puting (VEC) servers along with the road side units (RSUs),
VEC networks can be established to overcome the computation
constraints of the vehicles. Because of the proximity between
the vehicles and VEC servers, the latency requirements can
also be satisfied.

Many works have been proposed in recent years to cope
with the offloading problem in VEC networks. In [7] a
hierarchical VEC offloading framework is proposed, where the
revenues of the VEC servers are maximized under given delay
constraints of computing tasks. In [8] a similar framework is
proposed to maximize the benefit of the MEC service provider
while satisfying the delay requirements of the vehicles through
a contract theoretic approach. These schemes are then im-
proved in [9] to overcome the overload problem by balancing
the load among VEC servers and minimizing the total system
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Figure 1. Illustration of the studied multi-lane bidirectional VEC network.

delay. Nevertheless, the aforementioned results are conducted
under an assumption of static arrival of tasks, where all
vehicles only generate request of tasks at the starting point
of the VEC road, which is not practical in realtime networks.
Moreover, unlike the cloud computing networks where the
computational energy consumption of the cloud network can
be ignored, in MEC networks, how to satisfy the computational
and latency requirements with the consideration of energy
efficiency is still a challenge [2]. More recently, a joint
workload offloading and power control problem is formulated
in [10], which minimizes the total energy consumption of the
vehicles. However, the allocation strategy of the computational
resources is still missing.

In this work, in contrast to the designs in [7]–[9], only
considering the static VEC networks, or the designs in [10],
without considering the computation resources optimization,
we study a energy minimization problem in a dynamic VEC
network by jointly optimizing the offloading decision and the
computational resources.

II. SYSTEM MODEL

We consider a multi-lane bidirectional VEC network, where
M RSUs are successively and equidistantly located along the
both road side, as shown in Fig.1. Each RSU is equipped with
a VEC server. All RSUs are wired connected with a control
center so that the received information of all RSU can be
gathered and the offloading decision can be made globally.
Each RSU has a wireless converge range and thus the whole
VEC road is divided into M segments, where each has a
length of Ls. Each VEC server is capable with a fix number



of V virtual machines (VMs), where each VM has a limited
computational resource.

In order to deal with the realtime VEC networks, the
offloading system operates under slotted time and has a
updating time interval tsys. At each updating time point the
system receives N requests of the delay sensitive tasks from
N corresponding vehicles and makes decision of the offloading
strategy according to the status of the network, e.g., the
location, speed and computation buffer of the vehicles, and
the buffer of all VMs in the VEC servers. The n-th task,
where n ∈ N = {1, . . . , N} and N is the index set of all
vehicles, can be represented as a tuple (dn, cn, Tmax,n), where
dn, cn and Tmax,n denote the data size, required frequency
cycles to compute the task and the delay limit of the n-th
task, respectively. Each task can be processed locally in the
vehicle or offloaded to the RSU and accomplished in the VEC
server. It is noted that if the task is offloaded to the server, the
computation results should be transmitted back to the vehicle.
Normally the data size of the computation results are very
small compared to the offloaded data. Therefore, we do not
consider the energy consumption and latency of the back-
transmission process, as in [11]–[13]. However, it should be
ensured that the vehicle is not out of the converge range of
the chosen RSU during the back-transmission. This will be
considered in section II-D.

Since the system is in realtime, the vehicles may make
request at any position of the VEC road. Then, it is noted
that the RSUs which behind the vehicle are not valid options
for the offloading, since the vehicles only drive toward one
direction. Therefore, the potential options for each vehicle
are the RSUs ahead it along with the driving direction. On
the other hand, if a vehicle is currently very close to the
end of the VEC network, the available VEC servers for this
vehicle is very limited, which incurs a high possibility of
violation of the delay requirement. Therefore, for the fairness
concern we only allow a fixed number Z of available VEC
servers for each vehicle. Additionally, the vehicles, which do
not have Z number of available VEC servers in the driving
direction, are considered as out of the VEC network. Let
K = {1, . . . ,M × V } be the index set of all VMs. Then, we
define Zn ⊂ K as the index set of all available VMs of the n-th
vehicle. Note that the the set of all available VMs also includes
the VM in the vehicle itself. Thus, the decision variable of the
n-th vehicle’s task to the k-th available VM, where k ∈ Zn

and |Zn| = Z × V +1, is denoted as sn,k. Specifically, if the
n-th vehicle decides to offload its task to the k-th available
VM, then sn,k = 1, otherwise sn,k = 0. Specially, sn,0 is
the selection decision variable for the n-th vehicle itself, i.e.,
sn,0 = 1 means that the n-th vehicle computes its task locally.
Note that for each vehicle the task should be computed at only
one VM, i.e., the constraint

∑
k∈Zn

sn,k = 1,∀n ∈ N should
be satisfied.

A. Vehicular traffic and task arrival model

According to [14]–[16], the vehicular traffic model of a
single lane follows a Poisson process with the parameter λl,

where l ∈ L and L is the index set of all lanes. Additionally,
the entire vehicle traffic model of the whole road also follows
a Poisson process with the parameter λs =

∑
l∈L λl [17].

We assume that the offloading tasks of each vehicle follows
the principle of the discrete time On/Off Markov arrival model
[18], which is represented as a probability p at each time
instance.

B. Vehicle computation model

If it is decided that the n-th vehicle computes its task locally,
the selection decision variable sn,0 = 1 and a computational
resource fn,0 is allocated for the task. Thus, the computation
delay of the task is tcn,0 = cn/fn,0. We consider that the
computation buffer of the vehicle may has the task of last
time instant, and thus the task of this time instant can only be
computed after the accomplishment of last task. This leads to a
waiting delay twn,0. Then, the total delay of vehicle computation
process is

tn,0 = twn,0 + tcn,0

= twn,0 +
cn
fn,0

. (1)

C. VEC computation model

When the n-th vehicle chooses the k-th valid VM from its
available VM set of the server, i.e., k ∈ Zn \ {0}, to offload
its task, the selection decision variable sn,k = 1, and the
offloading process consists of 4 different delays as explained
in the follows.

1) Driving delay: Firstly, the vehicles should drive into the
coverage range of the chosen RSU. This leads to a driving
delay

tvn,k =
Ln,k

vn
, (2)

where Ln,k is the distance between the current position of
the vehicle and the boundary of the chosen RSU’s coverage
range, vn is the speed of n-th vehicle. Note that if the vehicle
is currently located inside the coverage range of the chosen
RSU, Ln,k = 0 and thus tvn,k = 0.

2) Transmission delay: Secondly, the vehicles should trans-
mit the task data to the chosen VEC server. This leads to a
transmission delay

trn,k =
dn
rn,k

=
dn

Blog2
(
1 +

Pnhn,k

N0

) , (3)

where rn,k is the transmission rate, B is the bandwidth, Pn

is the transmission power of the n-th vehicle, N0 is the noise
power and hn,k is the channel gain between the n-th vehicle
and the chosen RSU. We consider the Line-of-Sight (LoS)
channel model and thus the channel gain can be predicted
with the known distance.



3) Waiting delay: Similarly as the computation process in
the vehicles, we consider the waiting delay in the computation
buffer of the VMs. Note that during the driving time and the
transmission time the computation process of the task from last
time instant in all VMs is still ongoing. Therefore, the waiting
delay should exclude the driving and transmission time, which
can be obtained as

twn,k = max
{
tbn,k − tvn,k − trn,k, 0

}
, (4)

where tbn,k is the remaining computation time of the task from
last time instant at the decision time point.

4) Computation delay: Finally, the task is computed in the
VM under the allocated computation resource fn,k. Thus, the
computation delay is obtained as

tcn,k =
cn
fn,k

. (5)

D. Total time delay with selection decision variables

For the convenience of the formulation, we introduce the
constants tvn,0 = 0 and trn,0 = 0 to denote the zero driving
and transmission delay in the local vehicle computation model.
Then, the total time delay of the n-th task in k-th VM (k ∈ Zn)
is obtained as

tn,k = tvn,k + trn,k + twn,k + tcn,k. (6)

With the consideration of the selection decision variables,
the total time delay of the n-th vehicle’s task is expressed as

Tn =
∑
k∈Zn

sn,ktn,k. (7)

As mentioned before, it should be guaranteed that the vehi-
cles do not move out of the coverage range of the chosen RSUs
to process the back-transmission. Thus, the true delay limit of
the n-th task related to the k-th VM (k ∈ Zn\{0}) is obtained
as T̃max,n,k = min{Tmax,n, Tout,n,k}, where Tout,n,k is the time
duration for the n-th vehicle driving out of the coverage range
of the k-th VM. Since there is no back-transmission process
for local computation, we have T̃max,n,0 = Tmax,n.

E. Energy consumption model

We consider two types of the energy consumption in our
VEC network: the computational energy consumption and
the transmission energy consumption. Specifically, if the task
is computed locally in the vehicle, a computational energy
consumption is costed related to the workload of the task
and the allocated computational resource of the vehicle. Op-
positely, if the task is decided to be offloaded to the server,
the transmission energy consumption of the vehicle and the
computational energy consumption of the server are taken into
account.

For the n-th vehicle, the energy consumption to transmit
the task to the k-th VM is expressed as

Er
n,k = trn,kPn. (8)

On the other hand, the computational energy consumption
for the n-th task with the total required computational cycles

cn and a given computational frequency fn,k is expressed as
[19]

Ec
n,k = κcnf

2
n,k, (9)

where κ is a hardware related parameter.

III. JOINT COMPUTATION RESOURCE AND OFFLOADING
DECISION OPTIMIZATION

In this section we aim to minimize the total energy con-
sumption with the satisfaction of the delay constraints by
jointly optimizing the offloading strategy and the compu-
tational resources. In practice, the energy consumption of
the VEC servers may be less important compared to the
energy consumption of the vehicles. Therefore, without loss
of generality we add a weighting factor αk ∈ [0, 1] to the
consumed energy of each VM, where αk = 0 represents that
the energy consumption of the k-th VM is not concerned.
Then, the resulting optimization problem is formulated as

min
S,F

∑
n∈N

∑
k∈Zn

sn,k
(
αkE

c
n,k + Er

n,k

)
(10a)

s.t. Tn ≤
∑
k∈Zn

sn,kT̃max,n,k, ∀n ∈ N , (10b)

0 ≤ fn,k ≤ sn,kFmax,k, ∀n ∈ N , k ∈ Zn, (10c)∑
k∈Zn

sn,k = 1, ∀n ∈ N , (10d)∑
n∈N

sn,k ≤ 1, ∀k ∈ Z̃, (10e)

sn,k ∈ {0, 1}, ∀n ∈ N , k ∈ Zn, (10f)

where S and F are the set of all selection decision variables and
computational resources, respectively. The constraint (10b)
ensures that the time delay of each task should not exceed
the corresponding delay limit. (10c) gives the constraints of
the computational resources. Note that in (10c) if sn,k = 0,
then fn,k = 0. This ensures that for the VMs without assigned
tasks they are not allocated with any computational resource.
Furthermore, (10d) guarantees that for each task only one
VM of the server or the vehicle can be chosen. In (10e),
Z̃ =

⋃
n∈N Zn represents the union set of all index sets of

available VMs. (10e) guarantees that for each VM only one
task can be assigned.

It is noted that the optimization problem in (10) contains
some intractable terms that are not jointly convex over sn,k and
fn,k, i.e., the terms sn,kEc

n,k = κcnsn,kf
2
n,k in the objective

function (10a) and the terms sn,kt
c
n,k = sn,k

cn
fn,k

in the
constraint (10b). Moreover, due to the binary constraints in
(10f) the optimization problem is a mixed integer non-convex
problem. To solve the problem, we firstly reformulate it as the
following equivalent form and then relax the binary variables



to real variables, finally we proof that the resulting relaxed
problem is a joint convex problem.

min
S,F

∑
n∈N

∑
k∈Zn

(
αkE

c
n,k + sn,kE

r
n,k

)
(11a)

s.t.
∑
k∈Zn

s2n,ktn,k ≤
∑
k∈Zn

sn,kT̃max,n,k, ∀n ∈ N , (11b)

(10c), (10d), (10e), (10f).

Lemma 1. The optimization problems in (10) and (11) are
equivalent.

Proof. Since sn,k is a binary variable we evaluate two sit-
uations. When sn,k = 0, s2n,ktn,k = sn,ktn,k = 0, (10c)
implicates that fn,k = 0 and thus sn,kEc

n,k = Ec
n,k = 0.

Oppositely, when sn,k = 1, s2n,ktn,k = sn,ktn,k = tn,k and
sn,kE

c
n,k = Ec

n,k. For any possible value of sn,k we have
s2n,ktn,k = sn,ktn,k and sn,kEc

n,k = Ec
n,k. Thus (10) and (11)

are equivalent.

Then we relax the binary variables sn,k to real variables
with the range of [0, 1] and get the following optimization
problem.

min
S,F

∑
n∈N

∑
k∈Zn

(
αkE

c
n,k + sn,kE

r
n,k

)
s.t. (11b), (10c), (10d), (10e),

0 ≤ sn,k ≤ 1, ∀n ∈ N , k ∈ Zn.

(12)

Lemma 2. The relaxed optimization problem in (12) is a joint
convex problem.

Proof. Note that the objective function of (12) is a convex
function over S and F. The constraints (10c), (10d) and
(10e) are also linear convex constraints. In (11b) the non-
linear term s2n,kt

c
n,k = s2n,k

cn
fn,k

consists with both sn,k and

fn,k. Let g (sn,k, fn,k) =
s2n,k

fn,k
, then the Hessian matrix of

g (sn,k, fn,k) is H =

[
h11 h12
h21 h22

]
=

 2
fn,k

− 2sn,k

f2
n,k

− 2sn,k

f2
n,k

2s2n,k

f3
n,k

.

With the conditions sn,k ≥ 0 and fn,k > 0, we have h11 > 0,

h22 ≥ 0 and |H| = h11h22 − h12h21 =
4s2n,k

f4
n,k
− 4s2n,k

f4
n,k

= 0.
Thus g (sn,k, fn,k) is a joint convex function over sn,k and
fn,k. Combining with the other convex terms, (12) is a joint
convex problem.

Since the relaxed problem is a convex problem, the original
problem in (11) is solvable via the advanced solvers that can
solve mixed integer convex problem. Because of the constraint
in (10d) the computational complexity can be reduced to
O (N(Z × V + 1)).

IV. SIMULATION RESULTS

In this section, the proposed VEC network design is nu-
merically evaluated. We consider a 4 lane bidirectional road
with M = 8 RSUs located along the both sides. The lane

width is 4m. The coverage range of each RSU is Ls = 30m.
Each VEC server is equipped with V = 4 VMs. The number
of available VEC servers for each vehicle is Z = 4. The
computational limit Fmax of each VM in the VEC servers is
5GHz and in the vehicles is 1.2GHz. The speed of the vehicles
is assumed to be constant as v = 120km/h. Moreover, the
task size, required computational resources and the delay limit
of each task follow the uniform distributions U(10, 30)MB,
U(1, 5)GHz and U(8, 10)s, respectively. For the communica-
tion channel model, we adopt the LoS path loss model in [20]
as PL = 32.45 + 20log10f0(MHz) + 20log10d(km), where f0
is the carrier frequency in MHz and d is the distance in km.
Furthermore, we assume that the bandwidth of each transmis-
sion is B = 1MHz, the carrier frequency is f0 = 5GHz, the
transmit power of each vehicle is P = 20dBm and the noise
power is −174dBm/Hz. Following [19] we set κ = 10−11

for the computational energy consumption. We fully concern
all consumed energy equally as αk = 1, ∀k ∈ K ∪ {0}.
The updating interval is tsys = 2s and the resulting system
performance is averaged over 100 updating times, i.e., 200
seconds.

We firstly evaluate the consumed energy for processing the
tasks of the whole VEC network. In Fig. 2 the average energy
consumption of each updating time is depicted for the cases
with various vehicular density and task arrival probability p. It
is noticed that the average energy consumption of the whole
VEC network is increasing as the vehicular density increases.
However, for different task arrival level the increment speed of
the consumed energy is different. Specifically, under low task
rate the consumed energy increases slowly with the increment
of the vehicular density. Oppositely, under high task rate the
consumed energy increases dramatically. For instance, while
the vehicular density changes from about 20 veh/km to 190
veh/km, under low task rate, i.e., p = 0.2, the consumed
energy increases from about 0.012J to 0.124J, under high
task rate, i.e., p = 0.8, the consumed energy increases from
about 0.137J to 1.29J. This results in that the corresponding
difference between the consumed energy under low task rate
and high task rate grows from 0.1257J at 20 veh/km to
1.166J at 190 veh/km. This indicates that the task arrival rate
influences the consumed energy significantly.

In Fig. 3 and Fig. 4 the impacts of the delay limit Tmax
on the energy consumption and offloading ratio are depicted,
respectively. We set the vehicular density to 100 veh/km and
the delay limit for all task in a range of [3,10] seconds. It
is observed from Fig. 3 that as the delay limit decreases the
consumed energy increases dramatically for all task arrival
levels under low delay limit range, i.e., 3-5 second. This is
since that lower delay limit requires higher computational
resources, which leads to a larger energy consumption for
computation. Nevertheless, when delay limit is larger than
7 second, the consumed energy does not changes so much.
This is because that a longer computation time in the VMs
leads to a longer waiting delay for next time instant, and thus
the task in next time instant requires a shorter computation
time to satisfied the same delay limit level, which requires a
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Figure 2. Average energy consumption vs. vehicular density.

larger computational resources, i.e., larger energy consump-
tion. Moreover, it is noticed that a higher task rate leads to a
more significant change of the consumed energy through the
whole delay limit range.

From Fig. 4 we evaluate the offloading behaviour of the
proposed VEC network under various delay limits. Note that
the depicted offloading ratio is a averaged behaviour over
many time instance. For a single time instance with a dense
task flow the offloading ratio can reach a relatively high
level, e.g., 0.8. It is observed that generally the offloading
trend increases as the delay limit decreases. Under very low
delay limits, e.g., Tmax = 3s, the offloading ratio increases
dramatically. This is because the computational capability of
the vehicles is much weaker than the computational capability
of the VEC servers, thus the vehicles can not achieve the
delay requirements locally when the delay limits are very
short. Moreover, similarly as the results related to the energy
consumption, the increasing of the task arrival rate lead to a
significant increment of offloading ratios.

V. CONCLUSION

In this paper, we studied a energy efficiency problem in the
VEC network with delay constrained tasks. By considering
the computation and transmission energy consumption we
aimed to minimize the total consumed energy under the delay
constraints via the joint optimization of the offloading strategy
and computational resources allocation. To cope the resulting
mixed integer non-convex problem, we provided a relaxed
problem and proof its convexity. Via the numerical evaluation
we analyzed the behaviour of the energy consumption and
offloading under various of the vehicular densities and delay
limits.
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