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Problem 1. (25 points)
Analysis of Multivariate Densities and Maximum Likelihood Estimation:
Let fZ(x, y) be the joint density of the random vector Z = (X, Y )T. It is given by

fZ(x, y) =

c , 0 ≤ y ≤ a and y ≤ x ≤ y + a ,

0 , otherwise

for a proper number c with the parameter a > 0.

a) Sketch the support (topview) of the density fZ(x, y) for a = 1 and mark important
points. (2P)
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b) What is the value of c as a function of a such that fZ(x, y) is a proper density function.
(2P)

c) Calculate the missing value µX = E(X) of the mean vector

E(Z) =
(
µX

1
2

)

for a = 1. (3P)

d) Compute the missing values of the covariance matrix

ΣZ =
(

1
6 σ1,2
σ2,1 σ2,2

)

of the density fZ for a = 1 by calculating the variance σ2,2 of Y and the co-variances
σ1,2 and σ2,1. (3+2+1P)

e) Determine the marginal densities for X and Y for a = 1. (2+2P)



f) Are X and Y independent random variables? Please justify the reason behind your
answer. (1P)

g) Calculate the mean vector E(Z) and the covariance matrix Cov(Z) for the general case
a > 0. (1+1P)

h) Assuming n IID random vectors Z1,Z2, . . . ,Zn with densities fZi
(xi, yi) = fZ(xi, yi),

calculate the likelihood function L(a,Z1,Z2, . . . ,Zn). (1P)

i) Show that the log-likelihood function `(a,Z1,Z2, . . . ,Zn) = log
(
L(a,Z1,Z2, . . . ,Zn)

)
is

strictly monotonic in a. (2P)

j) Why is the quantity â = max
1≤i≤n

{yi, xi − yi} the maximum likelihood estimator for the
parameter a? (2P)











Problem 2. (25 points)
Principal Component Analysis:
Part I
Assume four independent two-dimensional samples:

x1 =
√

3
(

4
4

)
, x2 =

√
3
(

4
−4

)
, x3 =

√
3
(

0
8

)
, x4 =

√
3
(

0
−4

)
.

We suggest to keep the symbolic value
√

3 within your calculations without any conversion to
a low-precision number!

a) Calculate the sample mean x̄4. (2P)

b) Calculate the sample covariance matrix S4. (4P)

c) Determine the Gerschgorin’s circles of the normalized matrix 1
4S4 and sketch them on

the complex domain. (4+2P)
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d) Is the matrix S4 positive definite, negative definite, or indefinite? Give a reason for your
statement. (1P)

Part II

e) Now we independently take n samples in total such that the corresponding sample
covariance matrix Sn is given by

Sn =
(

14 −14
−14 110

)
.

Calculate the spectral decomposition VΛVT of Sn by determining the matrices V and
Λ. (3+5P)

f) Determine the best projection matrix Q to transform the two-dimensional samples to a
one-dimensional data and calculate the projection of x1. (2+1P)

g) Determine the residuum 1
n−1 max

Q

∑n
i=1 ‖Qxi −Qx̄n‖2 for the above choice of Q. (1P)









Problem 3. (25 points)
Discriminant Analysis:
A training dataset consists of three-dimensional vectors belonging to three classes denoted by
the labels yi ∈ {1, 2, 3}. This dataset is given below.

Data Label Data Label Data Label

x1 =

1
1
1

 y1 = 1 x4 =

 1
−1
−1

 y4 = 2 x7 =

−1
1
1

 y7 = 3

x2 =

1
2
0

 y2 = 1 x5 =

 0
−2
−1

 y5 = 2 x8 =

−1
0
2

 y8 = 3

x3 =

 1
1
−1

 y3 = 1 x6 =

−1
−1
−1

 y6 = 2 x9 =

−1
−1
1

 y9 = 3

Consider only those vectors xi in the dataset with labels yi = 1 and yi = 2.

a) Find the matrix W, that is the matrix corresponding to the sum of squares within
groups. (5P)

b) Find Fisher’s linear discriminant rule for classification of vectors with labels yi = 1 and
yi = 2. Explain each step. (3P)

Hint: For a matrix A =

α1xT

α2xT

α3xT

 ∈ R3×3 and any x =

x1
x2
x3

 ∈ R3, the eigenvalues and

its dominant eigenvector are given by (0, 0, tr(A)) and

α1
α2
α3

, respectively.

Suppose that the vectors xi with label yi are randomly drawn from a multivariate normal
distribution with the covariance matrix Σi and the expected value µµµi for i = 1, 2, 3.

c) Find the maximum likelihood estimation of the expected values. (4P)

d) If Σ1 = Σ2 = Σ3 = Σ, find the maximum likelihood estimation of the covariance matrix
Σ̂ by using the whole dataset (5P).

Consider only those vectors xi in the dataset with labels yi = 2 and yi = 3.

e) Find the maximum likelihood estimation of the covariance matrix, Σ̂. (3P)

f) Find the Gaussian maximum likelihood discriminant rule for classification of vectors
with labels yi = 2 and yi = 3. Explain each step. (5P)









Problem 4. (25 points)
Support Vector Machines:

a) Suppose that a training dataset is composed of vectors xi ∈ R3 belonging to two classes.
The class membership is indicated by the labels yi ∈ {−1,+1}. Suppose that the dataset
is separable. A Support vector machine is used to find the maximum-margin hyperplane
aTx + b = 0. The primal optimization problem gives the optimal a? as

(
1 3 0

)T
. Two

support vectors with different labels are given as :

xT
1 =

(
1 −1 1

)
, xT

2 =
(
−1 −1 −1

)
Find the optimal value b?. (3P)

Consider another training dataset that is non-separable. The following dual problem is solved
for a support vector machine

max
λλλ

6∑
i=1

λi −
1
2
∑
i,j

yiyjλiλjxTi xj

s.t. 0 ≤ λi ≤ 5 and
6∑
i=1

λiyi = 0.

The dataset with the outputs of the optimization problem are given in the following table.

Data Label Solution Data Label Solution

x1 =
(

1
1

)
y1 = −1 λ?1 = 0 x4 =

(
0.5
−0.5

)
y4 = 1 λ?4 = 4.73

x2 =
(

2
0

)
y2 = −1 λ?2 = 0.67 x5 =

(
−2
1

)
y5 = 1 λ?5 = 0.94

x3 =
(

0
0

)
y3 = −1 λ?3 = 5 x6 =

(
0
−1

)
y6 = 1 λ?1 = 0

b) Determine the support vectors. (4P)

c) Find the maximum-margin hyperplane by finding a? and b?. (6P)

d) Suppose that a kernel is given by K(x,y) = (2xTy + 1)2 for x,y ∈ Rp. Determine
the feature mapping function φφφ(x), i.e., the function φφφ : Rp → Rd where K(x,y) =
φφφ(x)Tφφφ(y). Determine the dimension of the feature space. (6P)

Consider a training dataset that is separable and consists of vectors xi ∈ Rp with labels
yi ∈ {−1,+1}.

e) Write down the optimization problem for the kernel-based support vector machine using
the kernel K(x,y) = exp(−γ‖x− y‖2). (3P)

f) Write down the kernel-based support vector machine classifier for this dataset. (3P)
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