
Exercise Notes

Fundamentals of Big Data Analytics
Programming Exercises

Dr. Arash Behboodi
Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Theoretische Informationstechnik
Kopernikusstrasse 16

52074 Aachen

Contents

1 Introduction 5
1.1 On Methodology of Data Analytics . 6
1.2 Distributed Data Storage . 7
1.3 Training, Validation and Test Datasets . 8

2 MNIST Dataset 11
2.1 MNIST Dataset Description . 11
2.2 Loading MNIST dataset . 11
2.3 Loading MNIST using Tensorflow . 14
2.4 MNIST dataset in PyTorch . 16

3 Dimensionality Reduction 19
3.1 Dimensionality Reduction for Swiss Roll . 20

3.1.1 PCA . 20
3.1.2 Isomap . 21
3.1.3 Diffusion Maps . 22
3.1.4 t-SNE . 23

3.2 Spike Models . 24
3.3 Tensorboard MNIST dataset . 28

3.3.1 PCA in Tensorboard . 30

4 Classification and Clustering 33
4.1 A Toy Example . 33
4.2 Two-class classification . 34
4.3 Fisher’s LDA versus Maximum Likelihood . 36
4.4 K-Means Clustering . 40
4.5 Discriminant Analysis for MNIST dataset . 42
4.6 Visualizing LDA . 44
4.7 Three-class classification . 46
4.8 Multi-class classification . 49

5 Support Vector Machines 51
5.1 Primal Problem - Linearly Separable Data . 51
5.2 Dual Problem- Linearly Separable Data . 53

5.2.1 Computational Time . 55
5.3 Primal Problem - Linearly non-separable case . 55
5.4 Dual Problem - Linearly non-separable case . 57

5.4.1 Computational Time . 59
5.5 Kernel-Based Methods . 59
5.6 Kernel-Based Method for MNIST classification 61

1 Introduction

The terms Data Science and Big Data are used interchangeably, as reference to a certain
contemporary trend. There is no widely accepted definition of either term that distinguishes
one from another. Sometimes Data Science is taken as an all encompassing term involving the
technology of extracting information from huge unstructured data and it has Big Data as one of
its building blocks. Sometimes Big Data is the general term that includes Data Science as the
block providing a set of tools for information extraction. There is no agreed upon definition of
these terms, nevertheless one can find recurring themes in many related discussions.
The starting point, the object of study, the material of data science are datasets that posses
some, if not all, of the following properties. They are huge, heterogeneous, distributed, unstruc-
tured, unreliable and with limited time accessibility. Hundreds of petabytes of data from the
large Hadron collider at CERN, brain imaging repositories, genotyping and sequencing, telecom-
munication call detail records, social media contents and flow field data for investigation of wake
flow of rockets are some examples of Big Data. Some of the questions in this context are about
the way the data is gathered as well as political issues regarding how to make various data
publicly available for research with proper regularization to guarantee privacy concerns.
The next issue is Data Management. The tremendous volume of data is prohibitive for utilizing
off-the-shelf storage and processing mechanisms. Data Management is concerned with compres-
sion, storage, streaming and computing as well as abstraction and integration. It provides the
efficient implementation of algorithms of Data Analytics. Complex algorithms usually run over
the data with the goal of extracting information, and these difficult computational tasks cannot
be performed in the conventional way given the huge volume of data, stored in parallel storage
devices. For instance, in the Read-Write stream model, sorting data requires an internal memory
space, increasing at least logarithmically with data size. One way to perform these algorithms
is to exploit the structure of the data, for example exploiting symmetries and regularities in
the data, or to decompose data into more or less independent parts. Data Management relies
on massively parallel architectures. Theoretical limits of the system as well as its practical
developments are the focus of the research community.
Data Analytics provides the algorithms, developed mainly to extract quantifiable information
from data sets as described above. Data Analytics is concerned with the development and
analysis of information extraction algorithms and relies on tools from a variety of disciplines
such as, to name a few, statistics, machine learning, classification theory, detection theory and
compressed sensing. It is very difficult to describe and classify the inventory of tools in Data
Analytics in a comprehensive way. One can attempt to classify these algorithms with respect
to the specific problem they want to solve such as classification, regression, etc. Alternatively
one can put these algorithms in different categories based on the mathematical field they draw
from, such as graph-based and probabilistic methods. The theories such as optimization theory
appear ubiquitously in many different algorithms and therefore have importance of their own for
Data Analytics. In the next part, the methods used in Data Analytics are reviewed in a similar
way. The challenge is to come up with tools that provide satisfactory performance with respect
to certain metrics in addition to being computationally efficient.
Another less discussed issue is mathematical modeling, i.e. the development of mathematical
models for a specific problem to provide an adequate benchmark for both Data Analytics and
data scientists. The availability of theoretical benchmarks is important for performance evalu-
ation in Data Analytics and also for deriving guidelines about the best algorithms. It sets the
path for developing algorithms that realize the benchmark. The challenge is to devise a tractable

5

6 CHAPTER 1. INTRODUCTION

model for a complex system acting as a data source.

1.1 On Methodology of Data Analytics

In this part, a survey of the algorithms of Data Analytics is provided. A comprehensive survey
of all algorithms used in Data Analytics, even by rough classification, is very difficult, if not
impossible.
There are some objectives that frequently appear as the goal of Data Analytics. Some of the
more well-known ones are classification, clustering, regression, dimensionality reduction and
visualization.
The purpose of dimensionality reduction and data visualization is to embed the high dimen-
sional data into a lower dimensional space with the goal of efficiently providing the information
about the data as well as using tools suitable to the target space for extracting information. For
instance, the data can be embedded into a proper continuous framework to exploit natural prob-
lem metrics. Some examples of such tools are Multidimensional Scaling (MDS) and Principal
component analysis (PCA).
Classification is concerned with separation of data into already available categories. Some al-
gorithms that are used for this purpose are perceptron learning algorithms, Support Vector
Machines (SVMs), Decision Trees & Ensemble Methods, Artificial Neural Networks (ANNs)
and Naive Bayes Classifiers.
Clustering on the other hand does not rely on any predisposed categorization and one goal is
indeed to find the categorization of data as well. A topic, closely related to clustering, is the
community detection problem where the goal is to find clusters of nodes based on the similarity
of their attributes. Clustering methods include for example K-Means Clustering, K-Medoids
Clustering, Sequential Agglomerative Hierarchic Nonoverlapping (SAHN) clustering, Clustering
Using Representatives (CURE) and Density-Based Spatial Clustering of Applications plus Noise
(DBSCAN).
Regression problems aim at revealing the relation between variables in data-sets. Its main
application is prediction which is central to fault detection applications. An example of regression
algorithms is Gaussian process learning.
There are general theories concerned with information extraction and recovery. Compressive
sensing, machine learning, pattern recognition, statistics and signal processing can be used to
extract information from noisy data-sets. It is hard to make a definite distinction between these
theories since their scope overlaps to a large extent and include some of the problems we dis-
cussed before. Denoising algorithms such as block-matching and 3-D filtering (BM3D) are also
used for information recovery. The choice of model for each problem is an important step as
it can naturally lead to usage of one of existing algorithms. There are theories such as har-
monic analysis that have direct application in information recovery by providing a structured
representation of data, for instance, by finding a sparsifying basis or frame for the data. Op-
timization theory is ubiquitous in Data Analytics. Performing many of these algorithms boils
down to solving an optimization problem which may turn out to be nonconvex and NP-hard and
therefore computationally efficient solvers are desirable for many algorithms. The formulation
of the optimization problem plays a significant role in the computational efficiency of the solving
algorithm.
Previously mentioned algorithms are based on tools from different mathematical fields. A
method can be a combination of many tools from different fields. Although the categorization
of algorithms of Data Analytics according to their used mathematical tools is not exhaustive,
we can nevertheless recognize a few important classes. Many algorithms utilize the graph-based
representation of problems and their solutions. These methods are labled as Graph based meth-
ods and include, for example, neural networks, deep learning, random forests, Bayesian networks
and decision tree algorithms. Probability based methods are also prevalent in Data Analytics,

1.2. DISTRIBUTED DATA STORAGE 7

for instance, by modeling the data as random processes in time and space leading to possibly
highly correlated highdimensional data or by using tools of estimation and detection theory
for extracting information. Some examples include Gaussian processes learning, large sample
approximations, Bayesian network and Hidden Markov Models. Finally, another set of tools
exploit mainly the geometric structure of the data, for example, when it forms a vector space
equipped with an inner product, or when the data can be embedded into a lower dimensional
structure, such as a manifold. Some examples of these geometry-based methods are manifold
learning, Principal Component Analysis (PCA), compressed sensing, and SVM.

1.2 Distributed Data Storage

Racks of compute nodes

When the computation is to be performed on very large data sets, it is not efficient to fit the
whole data in a data-base and perform the computations sequentially. The key idea is to use
parallelism from “computing clusters”, not a super computer, built of commodity hardware,
connected by Ethernet or inexpensive switches.
The software stack consists of distributed file systems (DFS) and MapReduce. In a distributed
file system Files are divided into chunks (typically 64 MB) and chunks are replicated, typically 3
times on different racks. There exists a file master mode or name mode with information where
to find copies of files. Some of the implementations of DFS are GFS (Google file system), HDFS
(Hadoop Distributed File System, Apache) and Cloud Store (open source DFS).
On the other hand MapReduce is the computing paradigm. In MapReduce, the system manages
parallel execution and coordination of tasks. Two functions are written by users namely Map
and Reduce. The advantage of this system is its robustness to hardware failures and it is able
to handle large datasets. MapReduce is implemented internally by Google.
The architecture of this system is such that compute nodes are stored on racks, each with its own
processor and storage device. Many racks are connected by a switch as presented in Figure 1.1.
They are connected by some fast network, interconnection by Gigabit Internet. The principles
of this system are as follows. First, files must be stored redundantly to protect against failure
of nodes. Second, computations must be divided into independent tasks. If one fails it can be
restored without affecting others.
We discuss an example of implementation matrix-vector multiplication using MapReduce.

Example (Matrix-Vector Multiplication by MapReduce). Suppose that the matrix M ∈ Rm×n

8 CHAPTER 1. INTRODUCTION

Matrix-Vector Multiplication

and the vector v ∈ Rn are given and the goal is to compute their multiplication x = Mv:

xi =
n∑

j=1

mijvj .

When n is large, say 107 then the direct computation requires the storage of the whole matrix
in the storage which might not be efficient. Particularly in practice the matrix M can be sparse
with say 10 or 15 non-zeros per row.
First the matrix and the vector is stored as the pairs (i, j,mij and the vector is stored as (i, vi).
MapReduce consists of two main functions, Map function and Reduce function. To implement
the multiplication using MapReduce, Map function produces a key-value pair to each entries of
the matrix and the vector. To the entry mij the pair (i,mijvj) is associated where i is the key
and mijvj is the pair. Note that it is assumed here that m is small enough to store the vector v
in its entirety in the memory. The Reduce function receives all the key-value pairs, lists all pairs
with key i and sum their values to get (i,

∑n
j=1mijxj) which gives the ith entry of the product.

If the vector v cannot fit into the memory then the matrix M is divided into horizontal strips
with certain width and the vector v is divided into vertical stripes with the same size as the
matrix stripes’ width. Accordingly the multiplication can be divided into sub-tasks, each feasible
using the MapReduce.

Example (Matrix-Matrix Multiplication by MapReduce). Given two matrices M ∈ Rn×m and
N ∈ Rm×r, the goal is to compute MN. Map function generates the following key-value pairs:

• For each element mij of M produce r key-value pairs ((i, k), (M, j,mij)) for k = 1, . . . , r.

• For each element njk of N produce n key-value pairs ((i, k), (N, j, njk)) for i = 1, . . . , n.

The Reduce function computes the multiplication as follows:

• For each key (i, k), find the values with the same j.

• Multiply mij and njk to get mijnjk.

• Sum up all mijnjk over j to get
∑m

j=1mijnjk.

1.3 Training, Validation and Test Datasets

A central problem in machine learning is overfitting. It occurs when the learning algorithm gives
a very good performance on the training data but it performs badly when it is tested after train-
ing. This is because the learning algorithm utilize a model which is more complex and therefore

1.3. TRAINING, VALIDATION AND TEST DATASETS 9

learns those features of particular training set which is non-essential to the task. Thereby it
becomes sensitive to variation of those features. Often this is due to the high number of free
parameters in the model. Regularization is an important technique in statistics particularly in
the context of inverse problems used for adding more constraints on the desired solution. By
limiting the solutions as such, it can be used to prevent overfitting.
However to avoid overfitting, the available dataset for learning is divided into two datasets. Only
one of them is used for training called the training set. The other one is called test set and is
used to examine the overfitting phenomena. After each update in the model, the training error
and the test error are observed. A low training error and high test error indicates overfitting. In
some cases, the dataset is divided into three new datasets namely training, validation and test
dataset. The validation set is not used for training but rather for choosing the hyperparameters
of a particular model used for training.

2 MNIST Dataset

2.1 MNIST Dataset Description

The Modified National Institute of Standards and Technology dataset, shortly called MNIST
dataset is commonly used for benchmarking purpose in machine learning research. It contains
images of handwritten digits from 0 to 9. The dataset consists of training and test dataset each
containing these gray-scale images of hand-drawn digits. The training set contains data that
should be used for designing (or training) a model, while the second dataset is used for testing
the obtained solution.
Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each
pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel,
with higher numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive.
Each pixel column in the training set has a name like pixelx, where x is an integer between 0
and 783, inclusive. To locate this pixel on the image, suppose that we have decomposed x as
x = i × 28 + j, where i and j are integers between 0 and 27, inclusive. Then pixelx is located
on row i and column j of a 28 x 28 matrix, (indexing by zero). For example, pixel31 indicates
the pixel that is in the fourth column from the left, and the second row from the top, as in the
ascii-diagram below. Visually, if we omit the “pixel” prefix, the pixels make up the image like
this:

000 001 002 003 ... 026 027
028 029 030 031 ... 054 055
056 057 058 059 ... 082 083
| | | | ... | |

728 729 730 731 ... 754 755
756 757 758 759 ... 782 783

MNIST dataset is included in software packages like Tensorflow and PyTorch. There are many
works on MNIST dataset. One can check the following website for detailed information and
downloading the dataset as well:

http://yann.lecun.com/exdb/mnist/

Four files can be found in the above website:

• Training set: train-images-idx3-ubyte
• Training labels: train-labels-idx1-ubyte
• Test set: t10k-images-idx3-ubyte
• Test labels: t10k-labels-idx1-ubyte

As it is explained in the webpage, the size of training set is 60000 while the size of test set is
10000.

2.2 Loading MNIST dataset

After these datasets have been downloaded, we load them and try to play around with them.
We define the file names corresponding to the dataset as well as the directory where they are
stored.

11

12 CHAPTER 2. MNIST DATASET

In [1]: FILES_DIR = 'MNIST_torch/raw/'
TRAIN_FILE = 'train-images-idx3-ubyte'
TRAIN_LABEL = 'train-labels-idx1-ubyte'
TEST_FILE = 't10k-images-idx3-ubyte'
TEST_LABEL = 't10k-labels-idx1-ubyte'

Note that there are additional information attached to the top of each file, for example in the
training set:

offset type value description
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
...

...
...

...
xxxx unsigned byte ?? label

We now open the provided dataset files and output their sizes. The size of training and test set
is the same as before. Note that the validation set should be manually constructed from the
training set. Moreover the additional header information should be removed.

In [2]: import numpy as np
with open(FILES_DIR + TRAIN_FILE,'rb') as ftemp:

datatemp = np.fromfile(ftemp, dtype = np.ubyte)
dataRTraining=datatemp[16::].reshape(60000,784)
print('Size of the training set: ',dataRTraining.shape)

with open(FILES_DIR + TRAIN_LABEL,'rb') as ftemp:
datatemp = np.fromfile(ftemp, dtype = np.ubyte)
labelRTraining=datatemp[8::]
print('Size of the training labels: ',labelRTraining.shape)

with open(FILES_DIR + TEST_FILE) as ftemp:
datatemp = np.fromfile(ftemp, dtype = np.ubyte)
dataRTest=datatemp[16::].reshape(10000,784)
print('Size of the test set: ',dataRTest.shape)

with open(FILES_DIR + TEST_LABEL,'rb') as ftemp:
datatemp = np.fromfile(ftemp, dtype = np.ubyte)
labelRTest=datatemp[8::]
print('Size of the test labels: ',labelRTest.shape)

Size of the training set: (60000, 784)
Size of the training labels: (60000,)
Size of the test set: (10000, 784)
Size of the test labels: (10000,)

Now let’s visualize some of the data.

In [3]: print(dataRTraining[0])
print('The label is:',labelRTraining[0])

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.2. LOADING MNIST DATASET 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 18 18 18 126 136 175 26 166 255

247 127 0 0 0 0 0 0 0 0 0 0 0 0 30 36 94 154
170 253 253 253 253 253 225 172 253 242 195 64 0 0 0 0 0 0

0 0 0 0 0 49 238 253 253 253 253 253 253 253 253 251 93 82
82 56 39 0 0 0 0 0 0 0 0 0 0 0 0 18 219 253

253 253 253 253 198 182 247 241 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 80 156 107 253 253 205 11 0 43 154
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 14 1 154 253 90 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 139 253 190 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 11 190 253 70 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 241

225 160 108 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 81 240 253 253 119 25 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 45 186 253 253 150 27 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 93 252 253 187
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 249 253 249 64 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 130 183 253

253 207 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 39 148 229 253 253 253 250 182 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 24 114 221 253 253 253

253 201 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 23 66 213 253 253 253 253 198 81 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 18 171 219 253 253 253 253 195

80 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 172 226 253 253 253 253 244 133 11 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 136 253 253 253 212 135 132 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]

The label is: 5

We can visualize it using another python function as follows. Note that the python the libraries
pyplot and numpy are used for plotting and computing numerical operations.

In [4]: # %matplotlib inline
from matplotlib.pyplot import imshow
import matplotlib.pyplot as plt
imshow(dataRTraining[0].reshape(28,28) ,cmap='binary')
plt.show()

14 CHAPTER 2. MNIST DATASET

imshow(dataRTraining[2018].reshape(28,28) ,cmap='binary')
plt.show()

2.3 Loading MNIST using Tensorflow

Now we use the tensorflow library provided by Google for loading the MNIST dataset. When
using tensorflow there is a built-in solution for importing the MNIST dataset within the ten-
sorflow library. This spares us the work of loading and formating the data contained in the
aforementioned CSV files. Instead, we may import a data structure from the tensorflow library
as:

In [5]: import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets("tensorboard_MNIST/MNIST_data/", one_hot=True)

2.3. LOADING MNIST USING TENSORFLOW 15

Extracting tensorboard_MNIST/MNIST_data/train-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/train-labels-idx1-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-labels-idx1-ubyte.gz

Note that, when loading the data, we enabled the one_hot option. One-hot refers to the
formatting style of the label vector(s) provided. For this dataset, there are 10 possible labels
corresponding to handwritten digits between 0 and 9. Then, for labeling an image, it is sufficient
to assign an integer number between 0 and 9 corresponding to its label. Nevertheless, when
using the aforementioned one-hot representation of the labels, every image is labeled using a
10-dimensional vector with the value 1 in the entry corresponding to its assigned label (i.e., the
“hot” entry) and zero elsewhere. Later in this course we will discuss the role of the one-hot
format in the context supervised learning.
Up to this point, we have extracted the MNIST datset, which is composed of 70.000 images
and associated labels.
When loading this dataset from the examples provided by the tensorflow library, these 70.000
images and lables are already partioned into 3 datasets:

In [6]: print("Size of:")
print("- Training-set:\t\t{}".format(len(data.train.labels)))
print("- Test-set:\t\t{}".format(len(data.test.labels)))
print("- Validation-set:\t{}".format(len(data.validation.labels)))

Size of:
- Training-set:55000
- Test-set:10000
- Validation-set:5000

Each element of the dataset is a vector of dimension 784 = 28× 28.

In [7]: print("shape of first entry:",data.train.images[0,:].shape)
print("shape of second entry:",data.train.images[1,:].shape)
print("shape of third entry:",data.train.images[2,:].shape)

shape of first entry: (784,)
shape of second entry: (784,)
shape of third entry: (784,)

As discussed, the label vectors inside “data.train.labels” are in a one-hot format. We can extract
the label number (between 0 and 9) by seaching for the entry with maximum value within the
one-hot vector:

In [8]: print("label of first entry:",data.train.labels[0,:])
print("label of first entry:",data.train.labels[0,:].argmax())
print("label of second entry:",data.train.labels[1,:])
print("label of second entry:",data.train.labels[1,:].argmax())

label of first entry: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
label of first entry: 7
label of second entry: [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
label of second entry: 3

16 CHAPTER 2. MNIST DATASET

We now show that this images correspond to the handritten digits ‘7’ and ‘3’ as expected. Note
that, in order to display these digits we must reshape the 784-dimensional image vectors back
into 28× 28 images.

In [9]: plt.imshow(data.train.images[0,:].reshape([28,28]),cmap='binary')
plt.show()
plt.imshow(data.train.images[1,:].reshape([28,28]),cmap='binary')
plt.show()

2.4 MNIST dataset in PyTorch

PyTorch is a python library developed by Facebook particularly for deep learning using GPU
and CPU. In this tutorial, we load the MNIST dataset. We import two libraries torch and
torchvision, the later for datasets.

2.4. MNIST DATASET IN PYTORCH 17

In [10]: import torch
from torchvision import datasets

MNIST dataset is loaded using the following command. There is a download flag which is set
to True if the dataset is to be downloaded from the internet. If MNIST dataset for PyTorch has
been downloaded, two files training.pt and test.pt are found in the folder “processed”. In this
case, put the flag to False so that it is not downloaded again. The flag “train” determines if you
intend to load training or test set.

In [11]: DNLD=True
trainingMNIST = datasets.MNIST('./MNIST_torch', train=True, download=DNLD)
testMNIST = datasets.MNIST('./MNIST_torch', train=False, download=DNLD)

The size of training and test set is the same as before. Note that the validation set should be
manually constructed from the training set.

In [12]: print("Size of:")
print("- Training-set:\t\t{}".format(len(trainingMNIST)))
print("- Test-set:\t\t{}".format(len(testMNIST)))

Size of:
- Training-set:60000
- Test-set:10000

Each entry of the dataset consists of PIL image module and its label. In the following, we
explore similarly the content of entries.

In [13]: trainingMNIST[0]

Out[13]: (<PIL.Image.Image image mode=L size=28x28 at 0x7FEE0431D748>, 5)

In [14]: print("shape of first entry:",trainingMNIST[0][0].size)
print("shape of second entry:",trainingMNIST[1][0].size)
print("shape of third entry:",trainingMNIST[2][0].size)

shape of first entry: (28, 28)
shape of second entry: (28, 28)
shape of third entry: (28, 28)

In [15]: print("label of first entry:",trainingMNIST[0][1])
print("label of first entry:",trainingMNIST[1][1])
print("label of first entry:",trainingMNIST[2][1])

label of first entry: 5
label of first entry: 0
label of first entry: 4

In [16]: imshow(np.asarray(trainingMNIST[0][0]),cmap='binary')
plt.show()
imshow(np.asarray(trainingMNIST[1][0]),cmap='binary')
plt.show()

18 CHAPTER 2. MNIST DATASET

3 Dimensionality Reduction

In this part, the goal is to find a suitable low-dimensional representation of a dataset. Our focus
will be on the following tools:

• Principal component analysis
• Isomap
• Diffusion Maps

We will also use Tensorboards for data visualization at the end. We use two dataset, MNIST
and Swiss Roll. We have introduced MNIST previously. We now introduce Swiss Roll. We use
sklearn package for that purpose.

In [1]: from sklearn.datasets.samples_generator import make_swiss_roll as sroll
n_samples = 1500
noise = 0
X, color = sroll(n_samples, noise)

Let’s plot the data and see how it looks like.

In [2]: %matplotlib inline
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
ax.scatter(X[:, 0], X[:, 1], X[:, 2],'o',c=color, cmap=plt.cm.Spectral)
plt.show()

19

20 CHAPTER 3. DIMENSIONALITY REDUCTION

This dataset is an example of data model with non-linear structure. More precisely the data
lives on a manifold and the goal is to exactly learn that.

3.1 Dimensionality Reduction for Swiss Roll

We now try to apply our algorithms to find a suitable representation of Swiss Roll in two-
dimensional space. We measure the run time of each algorithm as well.

In [3]: from time import time

3.1.1 PCA

We first run the PCA algorithm from sklearn package and then compare it with our own imple-
mentation.

In [4]: from sklearn.decomposition import PCA
t0pca = time()
XPCA = PCA(n_components=2).fit_transform(X)
t1pca = time()
plt.scatter(XPCA[:, 0], XPCA[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("PCA (%.2g sec)" % (t1pca - t0pca))
plt.show()

To implement PCA the sample covariance matix of the data should be formed. We first import
linear algebra package from python.

In [5]: import numpy as np
from numpy import linalg as la

3.1. DIMENSIONALITY REDUCTION FOR SWISS ROLL 21

Here are the main steps:

• The sample covariance matrix is found using a simple command.
• Spectral decomposition of the sample covariance matrix is found.
• The top eigenvectors are chosen and the projection matrix is formed.

In [6]: t0pca = time()
sampleCov=np.cov(X.T)
eigvalCov, eigvecCov = la.eig(sampleCov)
idx = eigvalCov.argsort()[::-1]
eigvalCov = eigvalCov[idx]
eigvecCov = eigvecCov[:,idx]

Finding the projection matrx
n=n_samples
Qproj=eigvecCov[:,[0,1]]
En=np.eye(n)-np.ones((n,n))/n # Centering matrix

This is one way of finding PCA
XPCA=(Qproj.T@X.T@En).T
t1pca = time()
plt.scatter(XPCA[:, 0], XPCA[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("PCA (%.2g sec)" % (t1pca - t0pca))
plt.show()

3.1.2 Isomap

Isomap is a manifold learning algorithm. In this example we construct the underlying graph
using 10 nearest neighbors.

22 CHAPTER 3. DIMENSIONALITY REDUCTION

In [7]: from sklearn import manifold
n_neighbors = 10
t0iso = time()
XISO= manifold.Isomap(n_neighbors, n_components=2).fit_transform(X).T
t1iso = time()

plt.scatter(XISO[0], XISO[1], c=color, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % ('Isomap', t1iso - t0iso))
plt.axis('tight')
plt.show()

3.1.3 Diffusion Maps

Diffusion maps are another example of non-linear dimensionality reduction algorithm. They do
not have an embeded implementation inside python so we use our own development here.

In [8]: from diffusionmapmod import diffusionmap as Diff

eps= 6
t=10
k=2
t0diff = time()
XDM=Diff(X,n_samples,eps,t,k).T
t1diff = time()

plt.scatter(XDM[:, 0], XDM[:, 1], c=color, cmap=plt.cm.Spectral)
plt.title("Diffusion Map (%.2g sec)" % (t1diff - t0diff))
plt.show()

3.1. DIMENSIONALITY REDUCTION FOR SWISS ROLL 23

3.1.4 t-SNE

The t-distributed stochastic neighbor embedding (t-SNE) is another dimensionality reduction
algorithm which is used for non-linear models.

In [9]: t0sne = time()
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
XSNE = tsne.fit_transform(X).T
t1sne = time()

plt.scatter(XSNE[0], XSNE[1], c=color, cmap=plt.cm.rainbow)
plt.title("t-SNE (%.2g sec)" % (t1sne - t0sne))
plt.axis('tight')

plt.show()

24 CHAPTER 3. DIMENSIONALITY REDUCTION

3.2 Spike Models

One interesting question that we can ask is whether PCA is capable of finding low-dimensional
structures in presence of noise.
First assume that only noise is observed. We draw i.i.d Gaussian vector in dimension p and
observe n samples from it.

In [10]: ## Number of vectors
n=1000
#######################
Dimension
from scipy.stats import norm
p=500
X=norm.rvs(0,1,size=(p,n))

We see what is the spectral decomposition of the sample covariance matrix. The histogram of
eigenvalues is plotted.

In [11]: Sn=(X@X.transpose())/n
v, u=la.eig(Sn)
idx = v.argsort()[::-1] # Sorting eigenvalues
vsorted=v[idx]

basex=range(1,p+1)
fig = plt.figure()
baseline = plt.plot(basex,vsorted)
plt.setp(baseline, 'color','b', 'linewidth', 3)
plt.grid(True)
plt.title('Scree Plot of Eigenvalues, n={},p={}'.format(n,p))

3.2. SPIKE MODELS 25

Out[11]: <matplotlib.text.Text at 0x7f832a62ba58>

Interestingly, it seems that from some eigenvalues are small and it seems that there is a lower
dimensional structure here. The reason is that the number of samples is small for detecting the
geometry of data. Indeed the density of eigenvalues is given by the Marchenko Pastur density
function.

In [12]: ###
the Marchenko Pastur density
###
def MPden(x,p,n):

Definition of the Marchenko Pastur density
q = p/n
lplus = 1+q+2*np.sqrt(q)
lminus = 1+q-2*np.sqrt(q)
return 1/(2*np.pi*x*q)*np.sqrt((lplus-x)*(x-lminus))

###
binsize=20
binnum=(p/binsize)
binmax=int((vsorted[0]-vsorted[p-1])*binnum)
xaxis=np.linspace(0.01,4,1000)

plt2=plt.plot(xaxis,[MPden(x,p,n)*binsize for x in xaxis],
label="Marchenko Pastur density")

###
Histogram
h = plt.hist(vsorted, bins=binmax, color='w', facecolor='y', label="Empirical PDF")
plt.legend()
plt.xlabel('Eigenvalues')

26 CHAPTER 3. DIMENSIONALITY REDUCTION

plt.ylabel('Empirical Density')
plt.title('Histogram of Eigenvalues, n={},p={}'.format(n,p))
plt.setp(plt2, 'color','b', 'linewidth', 3)
plt.grid(True)
plt.show()

What happens when we have a lower dimensional structure here? We assume that a one-
dimensional data is added to the noise. This is called the spike model. As it can be seen below,
the power of this one-dimensional data should be high enough so that it is detected properly.

In [13]: from scipy.stats import multivariate_normal as mvnorm
#######################
Covariance Matrix
gamma=p/n
Mu=np.zeros(p)
Covect=np.array(np.append([1], np.zeros(p-1)),ndmin=2)
Covect2=np.array(np.append([0, 1], np.zeros(p-2)),ndmin=2)
beta2=0.5
betavector=[0, 0.5, 1.5, 2.5]
xaxis=np.linspace(0.01,4,1000)
m=len(betavector)
for beta in betavector:

Sigma=np.eye(p)+beta*Covect.transpose()@Covect
+beta2*Covect2.transpose()@Covect2

#######################
X=mvnorm.rvs(Mu,Sigma,size=(1,n))
Sn=(X.transpose()@X)/n
v, u=la.eig(Sn)

3.2. SPIKE MODELS 27

idx = v.argsort()[::-1] # Sorting eigenvalues
vsorted=v[idx]
binmax=int((vsorted[0]-vsorted[p-1])*binnum)
######################
Plotting Densities
#######################
Marchenko Pastur density
plt.subplot(m,1,betavector.index(beta)+1)
plt2=plt.plot(xaxis,[binsize*MPden(x,p,n) for x in xaxis],

label="Marchenko Pastur density")
#######################
Histogram
h = plt.hist(vsorted, bins=binmax, color='w', facecolor='y',

label="Empirical PDF")
plt.ylabel('Empirical Density')
plt.title(r'Histogram of Eigenvalues, beta={}, gamma={}'.format(beta,gamma))
plt.setp(plt2, 'color','b', 'linewidth', 3)
plt.grid(True)
plt.show()

28 CHAPTER 3. DIMENSIONALITY REDUCTION

3.3 Tensorboard MNIST dataset

We first load a number of examples from MNIST dataset.

In [14]: import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
from tensorflow.examples.tutorials.mnist import input_data
TO_EMBED_COUNT = 100
mnist = input_data.read_data_sets("tensorboard_MNIST/MNIST_data/", one_hot=False)
batch_xs = mnist.train.images[:TO_EMBED_COUNT, :]
batch_ys = mnist.train.labels[:TO_EMBED_COUNT]
print(np.array(batch_xs).shape)

Extracting tensorboard_MNIST/MNIST_data/train-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/train-labels-idx1-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-labels-idx1-ubyte.gz
(100, 784)

These selected images can be presented as follows. This is called sprite image. It is a single
image that contains the small image of each data point.

In [15]: import os
LOG_DIR = 'tensorboard_MNIST/pca_sample'
path_for_mnist_sprites = os.path.join(LOG_DIR,'mnistdigits.png')

def create_sprite_image(images):
"""Returns a sprite image consisting of images passed as argument."""
"""Images should be count x width x height."""

if isinstance(images, list):
images = np.array(images)

img_h = images.shape[1]
img_w = images.shape[2]
n_plots = int(np.ceil(np.sqrt(images.shape[0])))

spriteimage = np.ones((img_h * n_plots ,img_w * n_plots))

for i in range(n_plots):

3.3. TENSORBOARD MNIST DATASET 29

for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < images.shape[0]:

this_img = images[this_filter]
spriteimage[i * img_h:(i + 1) * img_h,

j * img_w:(j + 1) * img_w] = this_img

return spriteimage

def vector_to_matrix_mnist(mnist_digits):
"""Reshapes normal mnist digit (batch,28*28) to matrix (batch,28,28)"""
return np.reshape(mnist_digits,(-1,28,28))

def invert_grayscale(mnist_digits):
""" Makes black white, and white black """
return 1-mnist_digits

to_visualise = batch_xs
to_visualise = vector_to_matrix_mnist(to_visualise)
to_visualise = invert_grayscale(to_visualise)

sprite_image = create_sprite_image(to_visualise)

plt.imsave(path_for_mnist_sprites,sprite_image,cmap='gray')
plt.imshow(sprite_image,cmap='gray')

Out[15]: <matplotlib.image.AxesImage at 0x7f831c3199e8>

30 CHAPTER 3. DIMENSIONALITY REDUCTION

3.3.1 PCA in Tensorboard

To carry out PCA, tensorboard has already a built-in option for PCA. Therefore, for the case
of PCA visualization we can leave the samples within the batch as they are.

In [16]: Xout = np.array(batch_xs) # tensorflow does the embedding (PCA)
##
visualization is prepared in PCA sample
NAME_TO_VISUALISE_VARIABLE = "mnistembedding"
path_for_mnist_metadata = os.path.join(LOG_DIR,'metadata.tsv')

We provide the variable to visualize and the visualization directory to tensorboard.

In [17]: embedding_var = tf.Variable(Xout, name=NAME_TO_VISUALISE_VARIABLE)
summary_writer = tf.summary.FileWriter(LOG_DIR)

Finally, we setup the visualization files.

In [18]: config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name

Specify where you find the metadata
embedding.metadata_path = 'metadata.tsv'

Specify where you find the sprite
embedding.sprite.image_path = 'mnistdigits.png'
embedding.sprite.single_image_dim.extend([28,28])

Say that you want to visualise the embeddings
projector.visualize_embeddings(summary_writer, config)

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, os.path.join(LOG_DIR, "model_mds.ckpt"), 1)

with open(path_for_mnist_metadata,'w') as f:
f.write("Index\tLabel\n")
for index,label in enumerate(batch_ys):

f.write("%d\t%d\n" % (index,label))

Now we can go the console and start tensorboard. This is done by specifying tensorboard
the directory where the visualization files are located. In linux/ubuntu systems the following
command is used

$ tensorboard --logdir=tensorboard_MNIST/pca_sample

The output of the tensorboard would be in this case the following image.

3.3. TENSORBOARD MNIST DATASET 31

4 Classification and Clustering

4.1 A Toy Example

We assume that dataset is generated from different Gaussian multivariate distributions.

In [1]: import warnings
warnings.filterwarnings('ignore')

Plots
%matplotlib inline
from matplotlib.pyplot import imshow
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import numpy as np
bounds = np.linspace(-1, 3, 10)
normcolor = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
##########
from scipy.stats import multivariate_normal as mvnorm
from scipy.stats import norm

We first fix mean values and covariance matrices corresponding to each class as well as their
labels. Three mean values are selected currently for the dataset.

In [2]: # Ambient dimension
p=2
Number of elements in each class
n1=40
n2=40
n3=40
Labels
color=np.concatenate((0*np.ones(n1,),1*np.ones(n2,),2*np.ones(n3,)),

axis=0)[np.newaxis]
Mean values
Either random
m1=norm.rvs(0,1,size=(p,))
m2=norm.rvs(0,1,size=(p,))
m3=norm.rvs(0,1,size=(p,))
Or fixed
#m1= [1,2]
#m2=[-2,-1]
#m3=[-2,3]
Covariance matrix
temp= norm.rvs(0, 0.5, size=(p, p))
Sigma1 = temp.T@temp
Sigma2 = Sigma1
Sigma3 = Sigma1

33

34 CHAPTER 4. CLASSIFICATION AND CLUSTERING

Generate data
X1=mvnorm.rvs(m1, Sigma1, size=(n1, 1))
X2=mvnorm.rvs(m2, Sigma2, size=(n2, 1))
X3=mvnorm.rvs(m3, Sigma3, size=(n3, 1))
Build the dataset
X=np.concatenate((X1,X2,X3),axis=0)
Xlabeled=np.concatenate((X,color.T),axis=1)
xbar1=np.mean(X1,0)
xbar2=np.mean(X2,0)
xbar3=np.mean(X3,0)
xmean1=(xbar1+xbar2)/2
xmean2=(xbar1+xbar3)/2
xmean3=(xbar2+xbar3)/2
Plot
fig = plt.figure()
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.show()

Now the data is ready for further processing.

4.2 Two-class classification

First, two classes are selected for classification. In that regard, Fisher’s linear discriminant
analysis (Fisher LDA) provides the same classifier as the maximum likelihood (ML) classifier.
We first prepare the dataset.

In [3]: X12=np.concatenate((X1,X2),axis=0)
y12=np.concatenate((0*np.ones(n1,),1*np.ones(n2,)),axis=0)[np.newaxis]

Before continuing, the centering matrix En will be used to simplify the whole process.

4.2. TWO-CLASS CLASSIFICATION 35

In [4]: #### Centering Matrix
def centering(n):

return np.eye(n)-np.ones((n,n))/n

Furthermore the following function provides the Fisher LDA function.

In [5]: def FisherLDA(a,mean_vector,Xinput):
n_class=mean_vector.shape[0]
Xtemp=np.tile(Xinput@a,(n_class,1))
return np.argmin(np.abs(Xtemp.T-mean_vector@a),axis=1)

The following building block implement the Fisher’s linear discriminant analysis.

In [6]: from numpy import linalg as la

##
Fisher Linear Discriminant Analysis
##
E=centering(n1+n2)
E1=centering(n1)
E2=centering(n2)
W=X1.T@E1@X1+X2.T@E2@X2
S=X12.T@E@X12
FLDAmat=la.inv(W)@S
Eigenvalue analysis
Find the eigenvalues and eigenvectors
eigval, eigvec =la.eig(FLDAmat)
Sort them in decreasing order
idx = eigval.argsort()[::-1]
eigval = eigval[idx]
eigvec = eigvec[:,idx]
a=eigvec[:,0]

The output of the classifier is presented as follows.

In [7]: fig=plt.figure()
###################################
Meshgrid of the classifier:
x_min = -4
x_max = 4
y_min=-4
y_max=4
nx, ny = 400, 200
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Xmesh=np.array(np.c_[xx.ravel(), yy.ravel()])
Ymesh=FisherLDA(a,np.array([xbar1,xbar2]),Xmesh).reshape(xx.shape)
plt.pcolormesh(xx, yy, Ymesh, norm=normcolor, cmap=plt.cm.rainbow)
###################################
plt.scatter(X12[:,0], X12[:,1], s=180, c=y12, cmap=plt.cm.rainbow)
w,z=np.ogrid[-4:4:100j,-4:4:100j]
xmean1
g=a[1]*w+a[0]*z-a.T@xmean1

36 CHAPTER 4. CLASSIFICATION AND CLUSTERING

plt.contour(w.ravel(),z.ravel(),g,[0],linewidths=(3,), colors=('r',))
plt.title('Fisher LDA')
plt.grid(True)
plt.legend()
plt.axis([-4, 4, -4, 4])
plt.show()

4.3 Fisher’s LDA versus Maximum Likelihood

Now consider three classes for classification. Note that ML and Fisher LDA will have different
outputs here. We start by training Fisher LDA model.

In [8]: ###
Fisher Linear Discriminant Analysis
n=n1+n2+n3
E=centering(n)
E1=centering(n1)
E2=centering(n2)
E3=centering(n3)
W=X1.T@E1@X1+X2.T@E2@X2+X3.T@E3@X3
S=X.T@E@X
FLDAmat=la.inv(W)@S
Eigenvalue analysis
Find the eigenvalues and eigenvectors
eigval, eigvec =la.eig(FLDAmat)
Sort them in decreasing order
idx = eigval.argsort()[::-1]
eigval = eigval[idx]

4.3. FISHER’S LDA VERSUS MAXIMUM LIKELIHOOD 37

eigvec = eigvec[:,idx]
a=eigvec[:,0]

The output of the classifier is plotted in the following block.

In [9]: fig = plt.figure()
###################################
Meshgrid of the classifier:
x_min = -6
x_max = 6
y_min=-6
y_max=6
nx, ny = 400, 200
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Xmesh=np.array(np.c_[xx.ravel(), yy.ravel()])
Ymesh=FisherLDA(a,np.array([xbar1,xbar2,xbar3]),Xmesh).reshape(xx.shape)

plt.pcolormesh(xx, yy, Ymesh, norm=normcolor, cmap=plt.cm.rainbow)
#######################################
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
w,z=np.ogrid[-5:4:100j,-5:4:100j]
g=a[1]*w+a[0]*z
baseline=plt.contour(w.ravel(),z.ravel(),g-a.T@xmean1,[0],linewidths=(3,))
plt.contour(w.ravel(),z.ravel(),g-a.T@xmean2,[0],linewidths=(3,),

colors=('r',))
plt.contour(w.ravel(),z.ravel(),g-a.T@xmean3,[0],linewidths=(3,),

colors=('g',))
plt.title('Fisher LDA')
plt.grid(True)
plt.legend()
plt.axis([-6, 6, -6, 6])

plt.show()

38 CHAPTER 4. CLASSIFICATION AND CLUSTERING

Next step is to train ML classifier. The following block implements the ML discriminant analysis.

In [10]: ##
ML Discriminant Analysis
Sigma =W/n
d1=xbar1-xbar2
d2=xbar1-xbar3
d3=xbar2-xbar3
a1=d1@la.inv(Sigma)
a2=d2@la.inv(Sigma)
a3=d3@la.inv(Sigma)
##
ML classifier
import scipy.linalg as sla

def MLDA(S,mean_vector,Xinput):
n_class=mean_vector.shape[0]
n_dimension=mean_vector.shape[1]
n_instance=Xinput.shape[0]
Xtemp0=np.tile(Xinput,(1,n_class))-mean_vector.ravel()
Xtemp1=Xtemp0.reshape((n_instance*n_class,n_dimension)).T
Xtemp2=sla.sqrtm(la.inv(S))@Xtemp1
Xtemp3= la.norm(Xtemp2,axis=0)
Xtemp4=Xtemp3.reshape((n_instance,n_class))
return np.argmin(Xtemp4,axis=1)

##

The output of ML classifier is ploted below.

4.3. FISHER’S LDA VERSUS MAXIMUM LIKELIHOOD 39

In [11]: fig=plt.figure()
###################################
Meshgrid of the classifier:
x_min = -6
x_max = 6
y_min=-6
y_max=6
nx, ny = 400, 200
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Xmesh=np.array(np.c_[xx.ravel(), yy.ravel()])
Ymesh=MLDA(Sigma,np.array([xbar1,xbar2,xbar3]),Xmesh).reshape(xx.shape)
plt.pcolormesh(xx, yy, Ymesh, norm=normcolor, cmap=plt.cm.rainbow)
######################################
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
w,z=np.ogrid[-5:4:100j,-5:4:100j]
g=a1[1]*w+a1[0]*z
plt.contour(w.ravel(),z.ravel(),a1[1]*w+a1[0]*z-a1.T@xmean1,[0]

,linewidths=(3,))
plt.contour(w.ravel(),z.ravel(),a2[1]*w+a2[0]*z-a2.T@xmean2,[0]

,linewidths=(3,), colors=('r',))
plt.contour(w.ravel(),z.ravel(),a3[1]*w+a3[0]*z-a3.T@xmean3,[0]

,linewidths=(3,), colors=('g',))
plt.title('ML DA')
plt.grid(True)
plt.legend()
plt.axis([-6, 6, -6, 6])
plt.show()

40 CHAPTER 4. CLASSIFICATION AND CLUSTERING

4.4 K-Means Clustering

We simply run K-meanse clustering algorithms for two and three clusters.

In [12]: from sklearn.cluster import KMeans
kmeans=KMeans(n_clusters=2, random_state=0).fit(X12)
###
Detecting Correct Labels
ykmeans=kmeans.labels_
I=[i for i in range(n1+n2) if (y12[0,i]!=ykmeans[i])]
Xfalse=X12[I]
###
Plot
fig = plt.figure()
plt.scatter(X12[:,0], X12[:,1], s=180, c=y12, cmap=plt.cm.rainbow)
plt.title('Original Data')
plt.grid(True)
plt.legend()
plt.show()
###########
fig = plt.figure()
plt.scatter(X12[:,0], X12[:,1], s=180, c=ykmeans,

cmap=plt.cm.rainbow)
plt.scatter(Xfalse[:,0], Xfalse[:,1], s=380, facecolors='none')

plt.title('K-means for K=2')
plt.grid(True)
plt.legend()
plt.show()

4.4. K-MEANS CLUSTERING 41

In [13]: from sklearn.cluster import KMeans
kmeans=KMeans(n_clusters=3, random_state=0).fit(X)
###
Detecting correct labels
ytemp=kmeans.labels_-1
ykmeans=[2 if ytemp[i]==-1 else ytemp[i] for i in range(n)]
I=[i for i in range(n) if (color[0,i]!=ykmeans[i])]
Xfalse=X[I]
###
Plot
fig = plt.figure()
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.title('Original Data')
plt.grid(True)
plt.legend()
plt.show()
###########
fig = plt.figure()
plt.scatter(X[:,0], X[:,1], s=180, c=ykmeans, cmap=plt.cm.rainbow)
plt.scatter(Xfalse[:,0], Xfalse[:,1], s=380, facecolors='none')

plt.title('K-means for K=3')
plt.grid(True)
plt.legend()

plt.show()

42 CHAPTER 4. CLASSIFICATION AND CLUSTERING

4.5 Discriminant Analysis for MNIST dataset

In this script, we apply Fisher’s linear discriminant analysis for classification of MNIST dataset.
The dataset is first loaded.

4.5. DISCRIMINANT ANALYSIS FOR MNIST DATASET 43

In [14]: ## Loading the data
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets("tensorboard_MNIST/MNIST_data/"

, one_hot=True)

Extracting tensorboard_MNIST/MNIST_data/train-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/train-labels-idx1-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-labels-idx1-ubyte.gz

After loading the dataset, training and test sets, we choose N entry for the training and Ntest
for the evaluation part. We would like to evaluate the effect of training set size and test set size
on the performance.

In [15]: ## Training set
N=100
Xtraining = data.train.images[0:N]
Ytraining = data.train.labels[0:N].argmax(axis=1)

Test set
Ntest=100
Xtest=data.test.images[0:Ntest]
Ytest=data.test.labels[0:Ntest].argmax(axis=1)

Here only the binary classification problem is considered. Two classes are chosen accordingly
with labels Ci and Cj .

In [16]: Ci=2
Cj=5

Choosing respective classes from the training set
Ind12=np.array([ind for ind in range(N) if ((Ytraining[ind]==Ci)

or (Ytraining[ind]==Cj))])
X12=Xtraining[Ind12]
Y12=Ytraining[Ind12]
print("The size of the trainging set with two classes is given by:", len(Ind12))
N12=len(Ind12)
Choosing respective classes from the test set
Ind12=np.array([ind for ind in range(Ntest) if ((Ytest[ind]==Ci)

or (Ytest[ind]==Cj))])
Xtest12=Xtest[Ind12]
Ytest12=Ytest[Ind12]
print("The size of the test set with two classes is given by:", len(Ind12))
N12test=len(Ind12)

The size of the trainging set with two classes is given by: 14
The size of the test set with two classes is given by: 15

44 CHAPTER 4. CLASSIFICATION AND CLUSTERING

Now we fit the linear discriminant analysis (LDA) to this model. First, LDA is applied to
the training set. The training error reperesents how well LDA can separate two classes. The
performance of LDA is evaluated on the test set. The test error shows the generalization property
of LDA.

In [17]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
model = LDA()
model.fit(X12, Y12)
TrainingError=np.count_nonzero(np.array(model.predict(X12))-Y12)/N12
print("The misclassification error for the training set is given by:"

,TrainingError)
TestError=np.count_nonzero(np.array(model.predict(Xtest12))-Ytest12)/N12test
print("The misclassification error for the test set is given by:"

,TestError)

The misclassification error for the training set is given by: 0.07142857142857142
The misclassification error for the test set is given by: 0.3333333333333333

4.6 Visualizing LDA

Using PCA, we project the data in two dimensional space and then visualize the performance
of LDA. Since the classifier is linear the output of PCA in two dimensional space is a line.

In [18]: ##
Loading PCA
from sklearn.decomposition import PCA
Fitting the model to the data
Xpca = PCA(n_components=2).fit_transform(X12)
pca=PCA(n_components=2)
Xpca=pca.fit_transform(X12)
###
Plotting the output
import matplotlib.pyplot as plt
fig = plt.figure()
Plotting the training data with the correct labels
plt.scatter(Xpca[:, 0], Xpca[:, 1], s=150, c=Y12,

cmap=plt.cm.rainbow, edgecolor='y')
Plotting the mean values per each class
Xmean=pca.transform(model.means_)
plt.scatter(Xmean[:, 0], Xmean[:, 1], s=150, c='black',

cmap=plt.cm.rainbow, edgecolor='y')
plt.title("Training set with correct labels")
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
plt.show()
##
Classification partition of the space
nx, ny = 400, 200
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Xmesh=pca.inverse_transform(np.c_[xx.ravel(), yy.ravel()])

4.6. VISUALIZING LDA 45

Ymesh=model.predict(Xmesh).reshape(xx.shape)
plt.pcolormesh(xx, yy, Ymesh, cmap=plt.cm.RdBu)
plt.contour(xx, yy, Ymesh, [0.5*Ci+0.5*Cj], linewidths=2.

, colors='k')
###
Error for the training set
ErrorColor=['white' if (i==0) else 'orange'

for i in np.absolute(model.predict(X12)-Y12)]
plt.scatter(Xpca[:, 0], Xpca[:, 1], s=150, c=ErrorColor,

cmap=plt.cm.rainbow, edgecolor='y')

plt.title("Training set with correct/incorrect calssification")
plt.axis('tight')
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)

plt.show()

46 CHAPTER 4. CLASSIFICATION AND CLUSTERING

4.7 Three-class classification

In this part, we repeat the experiments for three different classes. The linear discriminant
analysis should naturally extend to multi-class cases.

In [19]: Ck=7
Choosing respective classes from the training set
Ind12=np.array([ind for ind in range(N) if ((Ytraining[ind]==Ci)

or (Ytraining[ind]==Cj)
or (Ytraining[ind]==Ck))])

X12=Xtraining[Ind12]
Y12=Ytraining[Ind12]
print("%%%")
print("%%%")
print("The size of the trainging set with three classes is given by:", len(Ind12))
N12=len(Ind12)
Choosing respective classes from the test set
Ind12=np.array([ind for ind in range(Ntest) if ((Ytest[ind]==Ci)

or (Ytest[ind]==Cj)
or (Ytest[ind]==Ck))])

Xtest12=Xtest[Ind12]
Ytest12=Ytest[Ind12]
print("The size of the test set with three classes is given by:", len(Ind12))
print("%%%")
print("%%%")
N12test=len(Ind12)

%%%
%%%

4.7. THREE-CLASS CLASSIFICATION 47

The size of the trainging set with three classes is given by: 24
The size of the test set with three classes is given by: 30
%%%
%%%

We load LDA model once again and fit it to the new data. The performance is measured
afterward.

In [20]: modelII = LDA()
modelII.fit(X12, Y12)
TrainingError=np.count_nonzero(np.array(modelII.predict(X12))-Y12)/N12
TestError=np.count_nonzero(np.array(modelII.predict(Xtest12))-Ytest12)/N12test
print("%%%")
print("%%%")
print("The misclassification error for the training set is given by:",TrainingError)
print("The misclassification error for the test set is given by:",TestError)
print("%%%")
print("%%%")

%%%
%%%
The misclassification error for the training set is given by: 0.20833333333333334
The misclassification error for the test set is given by: 0.36666666666666664
%%%
%%%

Finally the output is again represented in two-dimensional space using PCA.

In [21]: Xpca = PCA(n_components=2).fit_transform(X12)
pca=PCA(n_components=2)
Xpca=pca.fit_transform(X12)
###
###
Plotting
import matplotlib.pyplot as plt
fig = plt.figure()
##############################
Plot 1
##############################
plt.scatter(Xpca[:, 0], Xpca[:, 1], s=150, c=Y12,

cmap=plt.cm.rainbow, edgecolor='y')
plt.title("Training set with true labels")
Xmean=pca.transform(modelII.means_)
plt.scatter(Xmean[:, 0], Xmean[:, 1], s=150, c='black',

cmap=plt.cm.rainbow, edgecolor='y')
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
plt.show()
##############################
Plot 2

48 CHAPTER 4. CLASSIFICATION AND CLUSTERING

##############################
###################
Creating the mesh
nx, ny = 400, 200
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Xmesh=pca.inverse_transform(np.c_[xx.ravel(), yy.ravel()])
Ymesh=modelII.predict(Xmesh).reshape(xx.shape)
plt.pcolormesh(xx, yy, Ymesh, cmap=plt.cm.RdBu)
plt.contour(xx, yy, Ymesh, [0.5*Ci+0.5*Cj], linewidths=2., colors='k')
###################
ErrorColor=['white' if (i==0) else 'orange'

for i in np.absolute(modelII.predict(X12)-Y12)]
plt.scatter(Xpca[:, 0], Xpca[:, 1], s=150, c=ErrorColor,

cmap=plt.cm.rainbow, edgecolor='y')
plt.title("Training set with correct/incorrect calssification")
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)
###
###
plt.show()

4.8. MULTI-CLASS CLASSIFICATION 49

4.8 Multi-class classification

In this part, we just apply Fisher’s linear discriminant analysis to multi-class classification. We
choose the whole training set for training phase and the algorithm is evaluated on the whole
MNIST test set. One can achieve 12.86% error on the training set and 12.7% error on the test
set.

In [22]: ###
Training set
N=55000
Xtraining = data.train.images
Ytraining = data.train.labels.argmax(axis=1)

Test set
Ntest=10000
Xtest=data.test.images
Ytest=data.test.labels.argmax(axis=1)

###
###
modelIII = LDA()
modelIII.fit(Xtraining, Ytraining)
TrainingError=np.count_nonzero(np.array(modelIII.predict(Xtraining))-Ytraining)/N
TestError=np.count_nonzero(np.array(modelIII.predict(Xtest))-Ytest)/Ntest
print("%%%")

50 CHAPTER 4. CLASSIFICATION AND CLUSTERING

print("%%%")
print("The misclassification error for the training set is given by:",TrainingError)
print("The misclassification error for the test set is given by:",TestError)
print("%%%")
print("%%%")

%%%
%%%
The misclassification error for the training set is given by: 0.12818181818181817
The misclassification error for the test set is given by: 0.1264
%%%
%%%

5 Support Vector Machines

5.1 Primal Problem - Linearly Separable Data

We again generate our toy example using multivariate Gaussian distribution.

In [1]: import warnings
warnings.filterwarnings('ignore')
import numpy as np
from scipy.stats import multivariate_normal as mvnorm
Number of classes
c=2
Number of elements in each class
n1=300
n2=300
n=n1+n2
color=np.array(np.r_[[0]*n1,[1]*n2])[np.newaxis]
Ambient dimension
p=2
##
Generate randomly two centers and a covariance matrix
datamean=10
m1=np.array([datamean,datamean])
m2=np.array([-datamean,-datamean])
Sigma1 =10*np.eye(p)
Sigma2 = Sigma1
X1=mvnorm.rvs(m1, Sigma1, size=(n1, 1))
X2=mvnorm.rvs(m2, Sigma2, size=(n2, 1))
##
X=np.r_[X1,X2]
Xlabeled=np.r_['1',X,color.T]

The next step is to formulate the quadratic optimization problem. We use cvxopt package to
solve the optimization problem.

In [2]: from cvxopt import matrix
import cvxopt.solvers as solvers
from time import time
##
Solving the quadratic program
QQP=matrix(np.diag([1]*p+[0]),tc='d')
pQP=matrix([0]*(p+1),tc='d')
yi=2*color-1
GQP=matrix(-1*np.r_['1',np.diag(yi.reshape(n,))@X,yi.T],tc='d')
hQP=matrix([-1]*(n),tc='d')
t0svm = time()
sol=solvers.qp(QQP, pQP, GQP, hQP)

51

52 CHAPTER 5. SUPPORT VECTOR MACHINES

t1svm = time()
w=np.array(sol['x'])

pcost dcost gap pres dres
0: 2.2356e-03 7.2186e+01 2e+03 2e+00 1e+04
1: 1.3404e-02 -3.4628e+02 5e+02 5e-01 4e+03
2: 3.3328e-02 -2.6787e+02 3e+02 2e-01 2e+03
3: 4.3287e-02 -8.3140e+01 9e+01 6e-02 5e+02
4: 4.7137e-02 -1.6724e+00 2e+00 1e-03 1e+01
5: 4.3253e-02 -1.5803e-01 2e-01 1e-04 1e+00
6: 4.0408e-02 -8.5850e-02 1e-01 8e-05 6e-01
7: 4.1248e-02 -6.2281e-02 1e-01 5e-05 3e-01
8: 3.5315e-02 1.3429e-02 2e-02 6e-16 3e-16
9: 3.8186e-02 2.3041e-02 2e-02 6e-16 1e-16

10: 3.5065e-02 3.0906e-02 4e-03 7e-16 5e-16
11: 3.4212e-02 3.4113e-02 1e-04 6e-16 2e-15
12: 3.4187e-02 3.4186e-02 1e-06 6e-16 9e-15
13: 3.4186e-02 3.4186e-02 1e-08 7e-16 5e-15
Optimal solution found.

The next step is to find the parameters of the classifier.

In [3]: ###############################
Ploting the hyperplane
aVec=np.array([w[0],w[1]])
a = -w[0] / w[1]
xx = np.linspace(-20, 20)
yy = a * xx - (w[2]) / w[1]
Margins
yy_up = a * xx - (w[2]) / w[1]+1/w[1]
yy_down = a * xx - (w[2]) / w[1]-1/w[1]
Finding the support vectors
upperSV=np.array([X[i] for i in range(n)

if (np.abs(aVec.T@X[i]+w[2]-yi.T[i])<=0.001)])

The output of the classifier is plotted as follows. The support vectors are encircled.

In [4]: import matplotlib.pyplot as plt
fig = plt.figure()

plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, 'k-', linewidth=2)
plt.plot(xx, yy_down, 'k--', linewidth=2)
plt.plot(xx, yy_up, 'k--', linewidth=2)
plt.scatter(upperSV[:, 0], upperSV[:, 1], s=300, facecolors='none')
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.axis([-20, 20, -20, 20])
plt.show()

5.2. DUAL PROBLEM- LINEARLY SEPARABLE DATA 53

Note that the data is linearly separable. Otherwise the optimization problem would not have
any solution.

5.2 Dual Problem- Linearly Separable Data

One can instead solve the dual problem.

In [5]: ##
Solving the dual program
yi=2*color-1
Qtemp=(yi.T*X)@(yi.T*X).T
QQP=matrix(Qtemp,tc='d')
pQP=matrix([-1]*n,tc='d')
GQP=matrix(-np.eye(n),tc='d')
hQP=matrix([0]*n,tc='d')
AQP=matrix(yi,tc='d')
bQP=matrix([0],tc='d')
t0svmdual=time()
sol=solvers.qp(QQP, pQP, GQP, hQP, AQP, bQP)
t1svmdual=time()
lam=np.array(sol['x'])

pcost dcost gap pres dres
0: -2.8148e+01 -5.0693e+01 2e+03 4e+01 2e+00
1: -2.0731e+01 -1.0951e+01 5e+02 1e+01 5e-01
2: -4.3666e+01 -1.0630e+01 3e+02 5e+00 2e-01
3: -1.5298e+01 -1.0373e+00 9e+01 1e+00 6e-02
4: -3.8901e-01 -4.7700e-02 2e+00 3e-02 1e-03
5: -5.9805e-02 -4.3267e-02 2e-01 3e-03 1e-04
6: -4.0984e-02 -4.0415e-02 1e-01 2e-03 8e-05

54 CHAPTER 5. SUPPORT VECTOR MACHINES

7: -9.7017e-03 -4.1251e-02 1e-01 1e-03 5e-05
8: -1.3429e-02 -3.5315e-02 2e-02 5e-18 2e-15
9: -2.3041e-02 -3.8186e-02 2e-02 3e-17 3e-15

10: -3.0906e-02 -3.5065e-02 4e-03 8e-18 3e-15
11: -3.4113e-02 -3.4212e-02 1e-04 7e-18 3e-15
12: -3.4186e-02 -3.4187e-02 1e-06 4e-18 3e-15
13: -3.4186e-02 -3.4186e-02 1e-08 4e-17 3e-15
Optimal solution found.

In [6]: ####################################
Finding the paramateres
supporting normal vector
w=lam.T@(np.diag(yi.reshape(n,))@X)
a = -w[0,0] / w[0,1]
Finding the support vectors
SVs=np.array([Xlabeled[i] for i in range(n)

if np.abs(lam[i])>0.001])
nSV=len(SVs) # Their numbers
for i in range(1,nSV):

if SVs[i,-1] != SVs[0,-1]:
svtemp=(SVs[i]+SVs[0])[0:-1]
bw=w@svtemp/2
break

b=bw/w[0,1]
###############################
Ploting the hyperplane
xx = np.linspace(-20, 20)
yy = a* xx + b
Margins
yy_up = a * xx +b+1/w[0,1]
yy_down = a * xx +b-1/w[0,1]

In [7]: ### Just a plot
fig = plt.figure()
plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, 'k-', linewidth=2)
plt.plot(xx, yy_down, 'k--', linewidth=2)
plt.plot(xx, yy_up, 'k--', linewidth=2)
plt.scatter(SVs[:, 0], SVs[:, 1], s=300, facecolors='none')
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.axis([-20, 20, -20, 20])
plt.show()

5.3. PRIMAL PROBLEM - LINEARLY NON-SEPARABLE CASE 55

5.2.1 Computational Time

When the data is linearly separable, the dimension of search space for the primal problem is the
dimension of data plus one. However the dimension of search space for the primal problem is
equal to the number of training samples. Therefore when the dimension of data is much higher
than the number of training samples, the dual problem is more efficient to solve. Otherwise
the primal problem is the good choice. In this problem, obviously the primal problem is more
efficient.

In [8]: print("Solving time of the primal problem:",t1svm-t0svm)
print("Solving time of the dual problem:",t1svmdual-t0svmdual)

Solving time of the primal problem: 0.006913185119628906
Solving time of the dual problem: 0.5178413391113281

5.3 Primal Problem - Linearly non-separable case

When the data is not linearly separable, penalty terms are added. We first generate a new
dataset which is not linearly separable.

In [9]: ##
Generate randomly two centers and a covariance matrix
datamean=4
m1=np.array([datamean,datamean])
m2=np.array([-datamean,-datamean])
Sigma1 =10*np.eye(p)
Sigma2 = Sigma1
X1=mvnorm.rvs(m1, Sigma1, size=(n1, 1))

56 CHAPTER 5. SUPPORT VECTOR MACHINES

X2=mvnorm.rvs(m2, Sigma2, size=(n2, 1))
##
X=np.r_[X1,X2]
Xlabeled=np.r_['1',X,color.T]

The primal problem is then solved similar to the previous step.

In [10]: C=6
QQP=matrix(np.diag([1]*p+[0]*(n+1)),tc='d')
pQP=matrix([0]*(p+1)+[C]*n,tc='d')
yi=2*color-1
Gtemp=np.r_[-1*np.r_['1',np.diag(yi.reshape(n,))@X,yi.T,np.eye(n)],

np.r_['1',np.zeros((n,p+1)),-np.eye(n)]]
GQP=matrix(Gtemp,tc='d')
hQP=matrix([-1]*(n)+[0]*n,tc='d')
t0svmnsp=time()
sol=solvers.qp(QQP, pQP, GQP, hQP)
t1svmnsp=time()
w=np.array(sol['x'])

pcost dcost gap pres dres
0: -1.8621e+04 1.5633e+04 5e+04 1e+01 1e+02
1: 2.3596e+03 -1.7466e+03 8e+03 1e+00 9e+00
2: 6.9557e+02 2.8717e+01 1e+03 2e-01 1e+00
3: 5.0647e+02 2.5298e+02 4e+02 5e-02 3e-01
4: 4.8480e+02 2.9077e+02 3e+02 3e-02 2e-01
5: 4.7754e+02 3.0257e+02 2e+02 3e-02 2e-01
6: 4.4923e+02 3.3256e+02 1e+02 7e-03 5e-02
7: 4.4410e+02 3.3736e+02 1e+02 6e-03 4e-02
8: 4.3701e+02 3.4836e+02 1e+02 3e-03 2e-02
9: 4.2618e+02 3.4957e+02 8e+01 1e-03 1e-02

10: 4.2473e+02 3.5117e+02 8e+01 1e-03 8e-03
11: 4.0484e+02 3.6586e+02 4e+01 1e-04 7e-04
12: 3.9040e+02 3.7434e+02 2e+01 3e-05 2e-04
13: 3.8340e+02 3.7840e+02 5e+00 3e-06 2e-05
14: 3.8191e+02 3.7954e+02 2e+00 1e-06 7e-06
15: 3.8108e+02 3.8019e+02 9e-01 1e-07 8e-07
16: 3.8075e+02 3.8050e+02 2e-01 3e-08 2e-07
17: 3.8063e+02 3.8061e+02 2e-02 1e-09 6e-09
18: 3.8062e+02 3.8062e+02 3e-04 1e-11 9e-11
Optimal solution found.

In [11]: ## Ploting the hyperplane
aVec=np.array([w[0],w[1]])
a = -w[0] / w[1]
xx = np.linspace(-20, 20)
yy = a * xx - (w[2]) / w[1]
Margins
yy_up = a * xx - (w[2]) / w[1]+1/w[1]
yy_down = a * xx - (w[2]) / w[1]-1/w[1]
Finding the support vectors

5.4. DUAL PROBLEM - LINEARLY NON-SEPARABLE CASE 57

upperSV=np.array([X[i] for i in range(n)
if (np.abs(aVec.T@X[i]+w[2]-yi.T[i]*(1-w[i+3]))<=0.001)])

##
Plots
fig = plt.figure()
plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, 'k-', linewidth=2)
plt.plot(xx, yy_down, 'k--', linewidth=2)
plt.plot(xx, yy_up, 'k--', linewidth=2)
plt.scatter(upperSV[:, 0], upperSV[:, 1], s=300, facecolors='none')
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.axis([-20, 20, -20, 20])

plt.show()

5.4 Dual Problem - Linearly non-separable case

The steps are similar to above. We just run the dual problem accordingly.

In [12]: C=6
yi=2*color-1
Qtemp=(yi.T*X)@(yi.T*X).T
QQP=matrix(Qtemp,tc='d')
pQP=matrix([-1]*n,tc='d')
GQP=matrix(np.r_[np.eye(n),-np.eye(n)],tc='d')
hQP=matrix([C]*n+[0]*n,tc='d')
AQP=matrix(yi,tc='d')
bQP=matrix([0],tc='d')
t0svmdualnsp=time()

58 CHAPTER 5. SUPPORT VECTOR MACHINES

sol=solvers.qp(QQP, pQP, GQP, hQP, AQP, bQP)
t1svmdualnsp=time()
lam=np.array(sol['x'])

pcost dcost gap pres dres
0: -4.9598e+02 -1.8116e+04 5e+04 1e+00 9e-13
1: -3.5261e+02 -5.6804e+03 8e+03 9e-02 7e-13
2: -2.7351e+02 -1.0954e+03 1e+03 1e-02 4e-13
3: -3.0380e+02 -6.3870e+02 4e+02 4e-03 3e-13
4: -3.1975e+02 -5.7076e+02 3e+02 2e-03 3e-13
5: -3.2442e+02 -5.4653e+02 2e+02 2e-03 3e-13
6: -3.3679e+02 -4.6654e+02 1e+02 5e-04 3e-13
7: -3.4079e+02 -4.5839e+02 1e+02 4e-04 3e-13
8: -3.4992e+02 -4.4359e+02 1e+02 2e-04 3e-13
9: -3.5033e+02 -4.2988e+02 8e+01 1e-04 3e-13

10: -3.5180e+02 -4.2778e+02 8e+01 8e-05 3e-13
11: -3.6591e+02 -4.0511e+02 4e+01 7e-06 4e-13
12: -3.7435e+02 -3.9047e+02 2e+01 2e-06 4e-13
13: -3.7840e+02 -3.8341e+02 5e+00 2e-07 4e-13
14: -3.7954e+02 -3.8191e+02 2e+00 7e-08 3e-13
15: -3.8019e+02 -3.8108e+02 9e-01 8e-09 3e-13
16: -3.8050e+02 -3.8075e+02 2e-01 2e-09 3e-13
17: -3.8061e+02 -3.8063e+02 2e-02 7e-11 3e-13
18: -3.8062e+02 -3.8062e+02 3e-04 9e-13 4e-13
Optimal solution found.

In [13]: ####################################
Finding the paramateres
supporting normal vector
w=lam.T@(np.diag(yi.reshape(n,))@X)
a = -w[0,0] / w[0,1]
Finding the support vectors
SVs=np.array([Xlabeled[i] for i in range(n) if np.abs(lam[i])>0.001])
SVmargin=np.array([Xlabeled[i] for i in range(n)

if (C-0.001>np.abs(lam[i])>0.001)])
bnonscaled=-w@SVmargin[0,0:-1]+2*SVmargin[0,-1]-1
b=-bnonscaled/w[0,1]

xx = np.linspace(-20, 20)
yy = a* xx + b
Margins
yy_up = a * xx +b+1/w[0,1]
yy_down = a * xx +b-1/w[0,1]
###
###
Plot
###
###
Just a plot
fig = plt.figure()

5.5. KERNEL-BASED METHODS 59

plot the line, the points, and the nearest vectors to the plane
plt.plot(xx, yy, 'k-', linewidth=2)
plt.plot(xx, yy_down, 'k--', linewidth=2)
plt.plot(xx, yy_up, 'k--', linewidth=2)
plt.scatter(SVs[:, 0], SVs[:, 1], s=300, facecolors='none')
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.axis([-20, 20, -20, 20])
plt.show()

5.4.1 Computational Time

In case of non-separable data, the dimension of search space is equal to n+ p+1 where n is the
number of samples and p is the data dimension. For the dual problem however, the dimension
of search space remains unchanged equal to n. Therefore it is in general more efficient to solve
the dual problem in this case.

In [14]: print("Solving time of the primal problem:",t1svmnsp-t0svmnsp)
print("Solving time of the dual problem:",t1svmdualnsp-t0svmdualnsp)

Solving time of the primal problem: 1.1849477291107178
Solving time of the dual problem: 1.1714956760406494

5.5 Kernel-Based Methods

We use the built-in kernel implementation of python. We first load the model and fit it to the
data.

60 CHAPTER 5. SUPPORT VECTOR MACHINES

In [15]: from sklearn import svm
kern='rbf'
t0svmkernel=time()
if (kern=='poly'):

kernelsvm =svm.SVC(kernel='poly', degree=2,
gamma=0.2, coef0=0.1).fit(X, color.T)

elif (kern=='rbf'):
kernelsvm =svm.SVC(kernel='rbf', gamma=0.4).fit(X, color.T)

t1svmkernel=time()

Afterwards, we plot the figures.

In [16]: fig = plt.figure()
h = 0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = kernelsvm.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
plt.scatter(kernelsvm.support_vectors_[:, 0],

kernelsvm.support_vectors_[:, 1], s=300, facecolors='none')
###
plt.scatter(X[:,0], X[:,1], s=180, c=color, cmap=plt.cm.rainbow)
plt.axis([x_min, x_max, y_min, y_max])
plt.show()

Note that the computational complexity of the kernel based methods is similar to the dual
problem.

5.6. KERNEL-BASED METHOD FOR MNIST CLASSIFICATION 61

5.6 Kernel-Based Method for MNIST classification

We first load the dataset using the tensorflow backend.

In [17]: import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets("tensorboard_MNIST/MNIST_data/"

, one_hot=False)
Training set
N=55000
Xtraining = data.train.images[0:N]
#Ytraining = data.train.labels[0:N].argmax(axis=1)
Ytraining = data.train.labels[0:N]
Test set
Ntest=10000
Xtest=data.test.images[0:Ntest]
#Ytest=data.test.labels[0:Ntest].argmax(axis=1)
Ytest=data.test.labels[0:Ntest]

Extracting tensorboard_MNIST/MNIST_data/train-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/train-labels-idx1-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-images-idx3-ubyte.gz
Extracting tensorboard_MNIST/MNIST_data/t10k-labels-idx1-ubyte.gz

Two classification problem is considered:

• Two-class classification problem
• Classification of the whole MNIST dataset

We first start by linear SVM and using two-class classifciation problem.

In [18]: ###
###
Two classes are chosen accordingly from the training set
Ci=2
Cj=9
Choosing respective classes from the training set
Ind12=np.array([ind for ind in range(N) if ((Ytraining[ind]==Ci)

or (Ytraining[ind]==Cj))])
X12=Xtraining[Ind12]
Y12=Ytraining[Ind12]
print("%%%")
print("%%%")
print("The size of the trainging set with two classes is given by:", len(Ind12))
N12=len(Ind12)
Choosing respective classes from the test set
Ind12=np.array([ind for ind in range(Ntest) if ((Ytest[ind]==Ci)

or (Ytest[ind]==Cj))])
Xtest12=Xtest[Ind12]
Ytest12=Ytest[Ind12]
print("The size of the test set with two classes is given by:", len(Ind12))
print("%%%")

62 CHAPTER 5. SUPPORT VECTOR MACHINES

print("%%%")
N12test=len(Ind12)

%%%
%%%
The size of the trainging set with two classes is given by: 10924
The size of the test set with two classes is given by: 2041
%%%
%%%

In [19]: model = svm.LinearSVC()
model.fit(X12, Y12)
TrainingError=np.count_nonzero(np.array(model.predict(X12))-Y12)/N12
TestError=np.count_nonzero(np.array(model.predict(Xtest12))-Ytest12)/N12test
print("%%%")
print("%%%")
print("The misclassification error for the training set is given by:",TrainingError)
print("The misclassification error for the test set is given by:",TestError)
print("%%%")
print("%%%")

%%%
%%%
The misclassification error for the training set is given by: 0.0009154155986818016
The misclassification error for the test set is given by: 0.014698677119059285
%%%
%%%

In [20]: model = svm.LinearSVC()
t0svmmnist=time()
model.fit(Xtraining, Ytraining)
t1svmmnist=time()
Training error and Test error
TrainingError=np.count_nonzero(np.array(model.predict(Xtraining))-Ytraining)/N
TestError=np.count_nonzero(np.array(model.predict(Xtest))-Ytest)/Ntest
print("%%%")
print("%%%")
print("The misclassification error for the training set is given by:",TrainingError)
print("The misclassification error for the test set is given by:",TestError)
print("The training time is:",t1svmmnist-t0svmmnist)
print("%%%")
print("%%%")

%%%
%%%
The misclassification error for the training set is given by: 0.0730909090909091
The misclassification error for the test set is given by: 0.082
The training time is: 71.01174092292786
%%%
%%%

Linear SVM provides a strictly better classification error compared to Fisher LDA.

	Introduction
	On Methodology of Data Analytics
	Distributed Data Storage
	Training, Validation and Test Datasets

	MNIST Dataset
	MNIST Dataset Description
	Loading MNIST dataset
	Loading MNIST using Tensorflow
	MNIST dataset in PyTorch

	Dimensionality Reduction
	Dimensionality Reduction for Swiss Roll
	PCA
	Isomap
	Diffusion Maps
	t-SNE

	Spike Models
	Tensorboard MNIST dataset
	PCA in Tensorboard

	Classification and Clustering
	A Toy Example
	Two-class classification
	Fisher's LDA versus Maximum Likelihood
	K-Means Clustering
	Discriminant Analysis for MNIST dataset
	Visualizing LDA
	Three-class classification
	Multi-class classification

	Support Vector Machines
	Primal Problem - Linearly Separable Data
	Dual Problem- Linearly Separable Data
	Computational Time

	Primal Problem - Linearly non-separable case
	Dual Problem - Linearly non-separable case
	Computational Time

	Kernel-Based Methods
	Kernel-Based Method for MNIST classification

