

Univ.-Prof. Dr. rer. nat. Rudolf Mathar

Written Examination Fundamentals of Big Data Analytics

Monday, August 20, 2018, 11:00 a.m.

Name: _

_____ Matr.-No.: ____

Field of study: _____

Please pay attention to the following:

- 1) The exam consists of **4 problems**. Please check the completeness of your copy. **Only** written solutions on these sheets will be considered. Removing the staples is **not** allowed.
- 2) The exam is passed with at least **30 points**.
- **3)** You are free in choosing the order of working on the problems. Your solution shall clearly show the approach and intermediate arguments.
- 4) Admitted materials: The sheets handed out with the exam and a non-programmable calculator.
- 5) The results will be published on Monday evening, the 27.08.18, on the homepage of the institute.

The corrected exams can be inspected on Friday, 31.08.18, 10:00h. at the seminar room 333 of the Chair for Theoretical Information Technology, Kopernikusstr. 16.

Acknowledged:

(Signature)

Problem 1. (15 points) **Principal Component Analysis (PCA):** Assume that **A** is given by:

$$\mathbf{A} = \begin{pmatrix} -2\\1\\0\\2 \end{pmatrix} \begin{pmatrix} -2 & 1 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 1\\2\\2\\0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 0 \end{pmatrix} + \begin{pmatrix} 0\\2\\2\\0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 0 \end{pmatrix}$$

- **a)** What is the rank of \mathbf{A} ? (1P)
- b) Calculate the spectral decomposition $\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ of \mathbf{A} by determining the matrices \mathbf{V} and $\mathbf{\Lambda}$. (4P)
- c) Assume that \mathbf{A} is a sample covariance matrix. Determine the projection matrix \mathbf{Q} of the PCA to transform four-dimensional samples to one dimension. (2P)

Let \mathbf{S}_n be the sample covariance matrix of n points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^4$. Assume that it has the spectral decomposition $\mathbf{S}_n = \tilde{\mathbf{V}} \tilde{\mathbf{\Lambda}} \tilde{\mathbf{V}}^{\mathrm{T}}$ where

$$\tilde{\mathbf{V}} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{pmatrix}, \ \tilde{\mathbf{\Lambda}} = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

and $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \in \mathbb{R}^4$.

d) Given $\mathbf{v}_1 = \frac{1}{3} \begin{pmatrix} 2 & 1 & 0 & 2 \end{pmatrix}^T$ and $\mathbf{v}_2 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 & 0 \end{pmatrix}^T$, visualize the following points in a 2D graph using PCA (4P)

$$\mathbf{x}_1 = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \, \mathbf{x}_2 = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \, \mathbf{x}_3 = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

Let $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2}{2\varepsilon})$ be the dissimilarity function used for Multidimensional Scaling (MDS).

e) Assume that $\mathbf{x}_i \neq \mathbf{x}_j$ for all $i \neq j$. If **M** denotes the transition matrix, what is the value of $\|\mathbf{M}\|_F^2$ as $\varepsilon \to 0$ and $\varepsilon \to \infty$? Justify your answer. (4P)

Problem 2. (15 points)

Classification and Clustering

A dataset is composed of six points $\mathbf{x}_1, \ldots, \mathbf{x}_6$ known to belong to one of two groups C_1 or C_2 . As shown in the following table, the group assigned to $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ is known, while it is unknown for \mathbf{x}_5 and \mathbf{x}_6 .

Data	Group	Data	Group
$\mathbf{x}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$	C_1	$\mathbf{x}_4 = \begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix}$	C_2
$\mathbf{x}_2 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$	C_1	$\mathbf{x}_5 = \begin{pmatrix} 0\\ -1/2\\ -1/2 \end{pmatrix}$?
$\mathbf{x}_3 = \begin{pmatrix} -1\\ -1\\ -1 \\ -1 \end{pmatrix}$	C_2	$\mathbf{x}_6 = \begin{pmatrix} 0\\1/2\\1/2 \end{pmatrix}$?

- a) Use $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ to obtain two cluster centers for k-means. (2P)
- b) Use the obtained cluster centers to assign labels to $\mathbf{x}_5, \mathbf{x}_6$. (2P)

Assume that linear discriminant analysis on the dataset $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ provides the discriminant vector

$$\mathbf{a}^* = \begin{pmatrix} -1/2\\ 0\\ 1 \end{pmatrix} \,.$$

- c) Calculate the sum of squares within groups for $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$. (4P)
- d) Calculate the sum of squares between groups for $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$. (4P)
- e) Use the obtained \mathbf{a}^* to assign a label to $\mathbf{x}_5, \mathbf{x}_6$. (3P)

Problem 3. (15 points) Support Vector Machines:

Suppose that a training dataset is composed of vectors $\mathbf{x}_i \in \mathbb{R}^2$, $i = 1, \ldots, 6$, belonging to two classes. The class membership is indicated by the labels $y_i \in \{-1, +1\}$. Suppose that the dataset is not linearly separable. A support vector machine is used to find the maximum-margin hyperplane by solving the following dual problem:

$$\max_{\boldsymbol{\lambda}} \quad \sum_{i=1}^{6} \lambda_i - \frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} y_i y_j \lambda_i \lambda_j \mathbf{x}_i^T \mathbf{x}_j$$

s.t. $0 \le \lambda_i \le 1$ and $\sum_{i=1}^{6} \lambda_i y_i = 0$

The dataset and the outputs of the optimization problem are given in the following table.

Data	Label	Solution	Data	Label	Solution
$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$y_1 = -1$	$\lambda_1^{\star} = 1$	$\mathbf{x}_4 = \begin{pmatrix} 0\\ 0 \end{pmatrix}$	$y_4 = 1$	$\lambda_4^\star = 1$
$\mathbf{x}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$y_2 = -1$	$\lambda_2^\star=0$	$\mathbf{x}_5 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$	$y_5 = 1$	$\lambda_5^{\star} = 0.12$
$\mathbf{x}_3 = \begin{pmatrix} 0\\ 2 \end{pmatrix}$	$y_3 = -1$	$\lambda_3^{\star} = 0.12$	$\mathbf{x}_6 = \begin{pmatrix} -2\\ -1 \end{pmatrix}$	$y_6 = 1$	$\lambda_6^\star=0$

a) Determine the support vectors. (4P)

- **b)** Find the maximum-margin hyperplane $\mathbf{a}^{\star T}\mathbf{x} + b^{\star}$ by finding \mathbf{a}^{\star} and b^{\star} . (6P)
- c) Use the above support vector machine to classify $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. (2P)
- d) Consider a polynomial kernel given by

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + 1)^3$$

Find a feature mapping for this kernel and the dimension of the corresponding feature space. (3P)

Problem 4. (15 points) Linear Regression for Machine Learning:

A training set with input-output pairs $(x_i, y_i), i \in \{1, 2, 3, 4\}$, is given in the following table.

i	input x_i	output y_i
i = 1	-5	-18
i = 2	-2	-9
i = 3	1	-1
i = 4	4	12

a) Use linear regression to find a linear approximation of y_i in terms of x_i . Use this model to predict the output for the input $x_5 = 0$. (8P)

Remember that for a training dataset $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ with $x_i, y_i \in \mathbb{R}$, the matrix **X** is defined as follows:

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}.$$

b) Suppose that for a dataset the matrix $\mathbf{X}^T \mathbf{X}$ is given by

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} 6 & 12 \\ 12 & 48 \end{pmatrix}.$$

Find the number of training samples, the mean value and the variance of the inputs. (4P)

c) Suppose that for the above matrix \mathbf{X} and the output vector \mathbf{y} , we have:

$$\mathbf{X}^T \mathbf{y} = \begin{pmatrix} -3\\1 \end{pmatrix}.$$

Use linear regression to find a linear approximation of the output y in terms of the input x. (3P)