

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 2 Friday, October 26, 2018

Problem 1. (Matrix Loewner Ordering Properties) Let V and W be two $n \times n$ non-negative definite matrices, such that $\mathbf{V} = (v_{ij}) \preceq \mathbf{W} = (w_{ij})$, with the eignevalues as:

- $\lambda_1(\mathbf{V}) \geq \cdots \geq \lambda_n(\mathbf{V}),$
- $\lambda_1(\mathbf{W}) \geq \cdots \geq \lambda_n(\mathbf{W})$

Prove the following statements.

- a) $\lambda_i(\mathbf{V}) \leq \lambda_i(\mathbf{W})$, for $i = 1, \dots, n$
- **b)** $v_{ii} \le w_{ii}$, for i = 1, ..., n
- c) $v_{ii} + v_{jj} 2v_{ij} \le w_{ii} + w_{jj} 2w_{ij}$
- d) $tr(\mathbf{V}) \leq tr(\mathbf{W})$
- e) $det(\mathbf{V}) \leq det(\mathbf{W})$

Problem 2. (Distribution of eigenvalues) Use Gerschgorin's Theorem to find the smallest regions in which the eigenvalues of the matrix \boldsymbol{A} are concentrated. Is \boldsymbol{A} positive definite? Determine the smallest interval $[\lambda_{\min}, \lambda_{\max}]$ in which the real part of the eigenvalues are distributed.

	(10	0.1	1	0.9	0
	0.2	9	0.2	0.2	0.2
A =	0.3	-0.1	5+i	0	0.1
	0	0.6	0.1	6	-0.3
	$\left(0.3\right)$	-0.3	0.1	0	$\begin{pmatrix} 0 \\ 0.2 \\ 0.1 \\ -0.3 \\ 1 \end{pmatrix}$

Gerschgorin's Theorem: Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, with entries a_{ij} , be given. For $i, j \in \{1, \ldots, n\}$ let $R_i = \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$ and $C_j = \sum_{\substack{i=1 \ i \neq j}}^n |a_{ij}|$ be the sum of the absolute values of the non-diagonal entries. Then every eigenvalue of \mathbf{A} lies within at least one of the discs centered at a_{ii} with radius min $\{R_i, C_i\}$.

Note that if one of the discs is disjoint from the others then it contains exactly one eigenvalue. If the union of m discs is disjoint from the union of the other n - m discs then the former union contains exactly m and the latter n - m eigenvalues of A.

Problem 3. (Weights on A Leverage)

A beam has niches with distances $d_1 \ge \cdots \ge d_n$ from the pivot. There are *n* weights of weight w_1, \ldots, w_n .

- How would you attach weights to niches so that torque of the beam is maximum?
- For any given assignment of weights to niches, can you improve the torque by exchanging the position of only two weights?