

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 5 Friday, November 16, 2018

Problem 1. (Distribution of eigenvalues) Use Gerschgorin's Theorem to find the smallest regions in which the eigenvalues of the matrix \boldsymbol{A} are concentrated. Is \boldsymbol{A} positive definite? Determine the smallest interval $[\lambda_{\min}, \lambda_{\max}]$ in which the real part of the eigenvalues are distributed.

	(10	0.1	1	0.9	0
	0.2	9	0.2	0.2	0.2
A =	0.3	-0.1	5+i	0	0.1
	0	0.6	0.1	6	-0.3
	(0.3)	-0.3	0.1	0	1 /

Gerschgorin's Theorem: Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, with entries a_{ij} , be given. For $i, j \in \{1, \ldots, n\}$ let $R_i = \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}|$ and $C_j = \sum_{\substack{i=1 \ i \neq j}}^n |a_{ij}|$ be the sum of the absolute values of the non-diagonal entries. Then every eigenvalue of \mathbf{A} lies within at least one of the discs centered at a_{ii} with radius min $\{R_i, C_i\}$.

Note that if one of the discs is disjoint from the others then it contains exactly one eigenvalue. If the union of m discs is disjoint from the union of the other n - m discs then the former union contains exactly m and the latter n - m eigenvalues of A.

Problem 2. (*PCA in 2-dimensional space*) Suppose that for *n* samples, the sample covariance matrix \mathbf{S}_n is given by

$$\mathbf{S}_n = \begin{pmatrix} 14 & -14\\ -14 & 110 \end{pmatrix} \,.$$

- a) Calculate the spectral decomposition $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathrm{T}}$ of \mathbf{S}_{n} by determining the matrices \mathbf{V} and $\mathbf{\Lambda}$.
- b) Determine the best projection matrix \mathbf{Q} to transform the two-dimensional samples to a one-dimensional data.
- c) Determine the residuum $\frac{1}{n-1} \max_{\mathbf{Q}} \sum_{i=1}^{n} \|\mathbf{Q}\mathbf{x}_{i} \mathbf{Q}\bar{\mathbf{x}}_{n}\|^{2}$ for the above choice of \mathbf{Q} .