

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 6 Friday, November 23, 2018

Problem 1. *(Spike model)* Fix $p = 500$ as the dimension of the space \mathbb{R}^p . Suppose that the **Problem 1.** (*Spike model*) Fix $p = 500$ as the dimension of the space \mathbb{R}^r . Suppose that the data is generated from two one dimensional subspaces modeled by $\sqrt{0.2}G_1v_1$ and $\sqrt{0.5}G_2v_2$, where v_1 and v_2 are orthogonal unit norm vectors in \mathbb{R}^p , and G_1 and G_2 are independent standard normal random variables. The high dimensional noise $U \in \mathbb{R}^p$ is independent of both G_1 and G_2 and is modeled as a standard normal random vector. The covariance matrix of this model $\boldsymbol{X} = \boldsymbol{U} + \sqrt{0.2}G_1\boldsymbol{v}_1 + \sqrt{0.5}G_2\boldsymbol{v}_2$ is described by:

$$
\mathrm{Cov}(\boldsymbol{X}) = \boldsymbol{I}_p + 0.2 \boldsymbol{v}_1 \boldsymbol{v}_1^{\mathrm{T}} + 0.5 \boldsymbol{v}_2 \boldsymbol{v}_2^{\mathrm{T}}.
$$

Suppose that X_1, \ldots, X_n are i.i.d. distributed with $Cov(X_i) = Cov(X)$.

- **a)** Find the minimum number n_2 of samples such that only the dominant eigenvalue is visible. Calculate the distance $\langle v_2, v_{\text{dom}} \rangle$ for this case.
- **b)** Find the minimum number n_1 of samples such that both dominant eigenvalues are visible. Calculate the distance $\langle v_2, v_{\text{dom}} \rangle$ for this case. Sketch the Marchenko-Pastur density for the latter case along with both dominant eigenvalues of the sample covariance matrix \mathbf{S}_n .

Problem 2. *(Centering Matrix)*

For a set of column vectors $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \in \mathbb{R}^k$ and the centering matrix $\mathbf{E}_k = \mathbf{I}_k - \frac{1}{k}$ $\frac{1}{k} \mathbf{1}_k \mathbf{1}_k^\mathrm{T} \in$ $\mathbb{R}^{k \times k}$, let $\mathbf{X} \in \mathbb{R}^{n \times k}$ be $\mathbf{X} = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}]^{\mathrm{T}}$ and $\overline{x}^{(j)} = \frac{1}{k}$ $\frac{1}{k} \sum_{i=1}^{k} x_i^{(j)}$ $x_i^{(j)}$, where $x_i^{(j)}$ $i^{(j)}$ is the *i*-th entry of $\mathbf{x}^{(i)}$.

- **a**) Show that $\mathbf{E}_k \mathbf{x}^{(j)} = \mathbf{x}^{(j)} \overline{x}^{(j)} \mathbf{1}_k$.
- **b**) Show that the (i, j) -th entry of $\mathbf{E}_k \mathbf{X}^T$ is given by $x_i^{(j)} \overline{x}^{(j)}$.
- **c**) Show that $\sum_{i=1}^{k} (\mathbf{E}_k \mathbf{X}^{\mathrm{T}})$ $i,j = 0$ for any $j \in \{1, 2, ..., n\}.$

Problem 3. *(Spike model II)* Show that if $\beta > 0$ then $(1 + \beta)(1 + \frac{\gamma}{\beta}) > (1 + \sqrt{\gamma})^2$.