

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 13 Friday, February 1, 2019

Problem 1. (Projection Matrix) Let \mathbf{X} be a matrix in $\mathbb{R}^{m \times n}$ such that $(\mathbf{X}^T \mathbf{X})$ is invertible. Show that $\mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ is the projection matrix onto the image of \mathbf{X} .

Problem 2. (Moore-Penrose pseudoinverse)

Let **A** be a matrix in $\mathbb{R}^{m \times n}$. The matrix **B** in $\mathbb{R}^{n \times m}$ is called Moore-Penrose pseudoinverse of **A** if the following conditions are satisfied:

- ABA = A
- BAB = B
- $\mathbf{AB} = (\mathbf{AB})^T$
- $\mathbf{B}\mathbf{A} = (\mathbf{B}\mathbf{A})^T$

The existence of this matrix has been proved by Penrose, 1955.

- a) Prove that Moore-Penrose pseudoinverse of \mathbf{A} , denoted by \mathbf{A}^{\dagger} is unique.
- **b)** If $rk(\mathbf{A}) = m$, then $\mathbf{A}^{\dagger} = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T)^{-1}$.
- c) If $rk(\mathbf{A}) = n$, then $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$.
- d) Consider the singular value decomposition of **A** given as $\mathbf{U}\mathbf{D}\mathbf{V}^T$ with $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ and $\mathbf{D} \in \mathbb{R}^{m \times n}$, a diagonal matrix of the singular values of **A**:

$$\mathbf{D} = egin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

with $\mathbf{S} = \text{diag}(\sigma_1, \ldots, \sigma_r)$ and $\sigma_i > 0$, $i = 1, \ldots, r$. Show that $\mathbf{B} = \mathbf{V}\mathbf{D}^+\mathbf{U}^T$ is Moore-Penrose pseudoinverse of \mathbf{A} where:

$$\mathbf{D}^{\dagger} = egin{bmatrix} \mathbf{S}^{-1} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix}^T.$$

Problem 3. (One-dimensional Linear Regression) Given n samples of (x_i, y_i) , consider the linear regression problem:

$$y_i = \vartheta_0 + \vartheta_1 x_i + \epsilon_i, \quad i = 1, \dots, n.$$

Find ϑ_0 and ϑ_1 .