

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 1 - Proposed Solution -

Friday, October 19, 2018

Solution of Problem 1

- a) Straight-forward from (b) by setting k to 1.
- **b)** (Taken directly from the lecture's script) Given two matrices $\mathbf{M} \in \mathbb{R}^{n \times m}$ and $\mathbf{N} \in \mathbb{R}^{m \times r}$, the goal is to compute $\mathbf{M}\mathbf{N}$. Map function generates the following key-value pairs:
 - For each element m_{ij} of **M** produce r key-value pairs $((i, k), (j, m_{ij}))$ for $k = 1, \ldots, r$.
 - For each element n_{jk} of **N** produce n key-value pairs $((i,k),(j,n_{jk}))$ for $i=1,\ldots,n$.

The Reduce function computes the multiplication as follows:

- For each key (i, k), find the values with the same j.
- Multiply m_{ij} and n_{jk} to get $m_{ij}n_{jk}$.
- Sum up all $m_{ij}n_{jk}$ over j to get $\sum_{j=1}^{m}m_{ij}n_{jk}$.

Solution of Problem 2

- a) Given two vectors $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{w} \in \mathbb{R}^n$, the goal is to compute $\mathbf{v} + \mathbf{w}$. The map function generates the following key-value pairs:
 - For each element v_i of **v** produce 1 key-value pair $((i), (v_i))$.
 - For each element w_i of **w** produce 1 key-value pair $((j), (w_i))$.

The Reduce function computes the multiplication as follows:

- For all i, find all the key-value pairs with the same i.
- Sum v_i and w_i to get either $v_i + w_i$, v_i , or w_i .
- b) Given one sparse vector $\mathbf{v} \in \mathbb{R}^n$, the goal is to compute $\frac{1}{n} \sum_{i=1}^n v_i$. The map function generates the following key-value pairs:
 - For each element v_i of **v** produce 1 key-value pair $((i), (v_i))$.

The Reduce function computes the multiplication as follows:

- For all i, fetch v_i .
- Sum up all v_i and divide by n to get $\frac{1}{n} \sum_{i=1}^n v_i$.