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Solution of Problem 1
The multivariate normal (or Gaussian) distribution of a random vector Y ∈ Rp has the
following pdf:

fY(y) = 1
(2π)p/2|Σ|1/2 exp

{
−1

2(y− µ)T Σ−1(y− µ)
}
,

where y = (y1, . . . , yp)T ∈ Rp, and the parameters: µ ∈ Rp, Σ ∈ Rp×p, where Σ � 0.

a) In our case we have that p = 2, yielding

fY(y) = 1
(2π)|Σ|1/2 exp

{
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2(y− µ)T Σ−1(y− µ)
}
.

We start by calculating the determinant of Σ ∈ R2×2 as |Σ| = σ2
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Finally, we calculate
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this gives us the final expression for fY(y) as

fY(y) = 1
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b) From the definition of µ and Σ we directly get Y1 ∼ N(µ1, σ1) and Y2 ∼ N(µ2, σ2).



c) As stated in theorem 3.5 of the lecture’s script, the conditional density fY1|Y2(y1|y2) is
given by the normal distribution fY1|Y2(y1|y2) ∼ N1(µ1|2,Σ1|2), where µ1|2 is

µ1|2 = µ1 + Σ12Σ−1
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Solution of Problem 2
Note that an estimator X̂ of a parameter X is unbiased if its expected value equals X.
Therefore it is enough to show:

E(X) = µ = E(X), E(Sn) = Σ = Cov(X).

First see that:
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For the sample covariance matrix, we have:
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It is easy to see that:
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Using this fact, it is easy to see that:
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Therefore E
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Σ. We can finally find the expected value of sample

covariance as follows:
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Solution of Problem 3
Consider four samples in R3 given as follows:

x1 =

 1
2
−3

 ,x2 =

 3
−1
−2

x3 =

−4
2
2

x4 =

−3
−1
4

 .
a) The sample mean can be easily found as:

x =

−0.75
0.5
0.25


To find the sample covariance, we have:

Sn = 1
3

4∑
i=1

(xi − x)(xi − x)T = 1
3

 32.75 −4.5 −28.25
−4.5 9 −4.5
−28.25 −4.5 32.75

 .
b) Step 1: find the sample covariance matrix Sn (previous part)

Step 2: find the eigenvalues and eigenvectors of the matrix. Sort them out and pick 2
orthonormal eigenvectors corresponding to 2 highest eigenvalues

λ1 = 20.333333, λ2 = 4.5, λ3 = 0.
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Step 3: Construct Q = v1vT

1 + v2vT
2 .

Following this procedure, we have:

Q = 1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 .



c) Note that all the points are already on the same plane x+ y + z = 0, so intuitively, the
projection should be the projection on the same plane. This projection leaves those
points untouched (Check!). Each y ∈ Im(Q) is also on this plane. To see that assume
that y = Qx. Then y1 + y2 + y3 = 0. Another way, is to observe that the kernel of Q
is spanned by the vector ( 1√

3 ,
1√
3 ,

1√
3), the last eigenvector. Note, how the eigenvalue

is zero for this eigenvector. Therefore its image is the orthogonal complement of this
vector which is the plane x+ y + z = 0.


