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Solution of Problem 1

a) Note that:
‖xi − xj‖2 = xTi xi + xTj xj − 2xTi xTj .

It is easy to check that:
(XXT )ij = xixTj .

Consider x̂ = 1
2 [xT1 x1, . . . ,xTnxn]T . We have:

1nx̂T =


1
2xT1 x1 . . . 1

2xTnxn
1
2xT1 x1 . . . 1

2xTnxn
... . . . ...

1
2xT1 x1 . . . 1

2xTnxn


This means that (1nx̂T )ij = 1

2xTj xj and moreover (x̂1Tn )ij = 1
2xTi xi

Therefore: (
−1

2D(2)(X)
)
ij

= (XX)ij − (1nx̂T )ij − (x̂1Tn )ij.

The element-wise identity implies the desired identity.

b) Since −1
2En∆(2)En is non-negative definite and has the rank rk(−1

2En∆(2)En) ≤ k, it
can be written as:

−1
2En∆(2)En =

k∑
i=1

λivivTi ,

where λ1 ≥ · · · ≥ λk are top k eigenvalues of the matrix −1
2En∆(2)En with corresponding

orthonormal eigenvectors v1, . . . ,vk. This can be obtained from spectral decomposition
of −1

2En∆(2)En. Using this representation, the matrix X can be constructed as X =
[
√
λ1v1, . . . ,

√
λkvk]. It can be seen that:

XXT =
k∑
i=1

λivivTi = −1
2En∆(2)En.

Moreover the image of −1
2En∆(2)En is a subset of the image of En. Therefore for all

non-zero λi, the corresponding eigenvector vi belongs to the image of En and since it is
an orthogonal projection:

Envi = vi.
If λi = 0, then trivially En

√
λivi =

√
λivi = 0. This means that:

EnX = X =⇒ XTEn = XT .



c) The direction where A = 0 is trivial. Let us assume EnAEn = 0. This means that the
matrix A takes each vector in the image of En to the kernel of En. Note that the kernel
of En is spanned by 1n, so for each v such that vT1n = 0, we have:

∃α ∈ R; Av = α1n.

Pich v = ei−ej . The equation above implies that (Av)i = (Av)j . But (Av)k = aki−akj.
Therefore:

aii − aij = aji − ajj.

But akk = 0 for all 1 ≤ k ≤ n and A is symmetric. Therefore aij = 0 for all i, j which
means that A = 0.

Solution of Problem 2

a) First of all, note that:
x = 1

n
X1n.

Moreover:
Sn = 1

n− 1(X− x1Tn )(X− x1Tn )T .

Therefore:

Sn = 1
n− 1(X− 1

n
X1n1Tn )(X− 1

n
X1n1Tn )T = 1

n− 1XEnET
nXT .

Using EnEn = En, we have Sn is equal to 1
n−1XEnXT .

b) The result of PCA is Q(xi − x). This is indeed equal to Q(xi − 1
n
X1n). Constructing

the matrix X as suggested, the projected points can be written as:

Q(X− 1
n

X1n1Tn ) = QXEn.

c) Let the singular value decomposition of XEn be:

XEn = Up×pΛVn×p
T .

It is known that:
Sn = 1

n− 1UΛ2UT ,

and top k eigenvectors of Sn are given therefore by picking first k columns of U, denoted
by Uk. In any case, we have:

UT
kX =


uT1 x1 . . . uT1 xn
... . . . ...

uTk x1 . . . uTk xn

 = [x̂1, . . . , x̂n],

where x̂i is the projected point into the k dimensional subspace. From the previous
point, the projected points are given by UT

kXEn.



See that:
UT
kXEn = UT

kUΛVT .

But :

UT
kU =


uT1 u1 . . . uT1 up
... . . . ...

uTku1 . . . uTkup

 = [Ik 0k×p−k].

Using the fact that Λ2
ii = λi, we have:

UT
kUΛ = [Ik 0k×p−k]Λ = [diag(

√
λ1,
√
λ2, . . . ,

√
λk)k×k 0k×p−k]

Now write V = [v1 . . .vp] where vi ∈ Rn. We have:

UT
kUΛVT = [diag(

√
λ1,
√
λ2, . . . ,

√
λk)k×k 0k×p−k]VT =


√
λ1vT1
...√
λkvTk


d) MDS starts by finding −1

2EnD(2)En which is EnXTXEn for Euclidean distance matrix.
The spectral decomposition of EnXTXEn is then found by V̂ diag(λ1, . . . , λn)V̂T where
V̂ = [v̂1 . . . v̂n] is the eigenvector matrix. Using SVD of XEn above we get:

EnXTXEn = VΛ2VT .

Therefore if V = [v1 . . .vp], then for i = 1, . . . , p we have:

v̂i = vi.

The solution to MDS is then X∗T = [
√
λ1v1, . . . ,

√
λkvk] ∈ Rn×k. This means that:

UT
kUΛVT = X∗.

It shows that applying MDS on the distance matrix D(X) provides the same result as
PCA.

Remark: There is another way of showing this equivalence. Note that Sn = 1
n−1XEnXT

and let UΛUT be its spectral decomposition. Suppose that (λ,u) is eigenvalue-eigenvector of
XEnXT = (XEn)(XEn)T . Then:

(XEn)T (XEn)(XEn)Tu = λ(XEn)Tu.

This means that (XEn)Tu = EnXTu is an eigenvector of (XEn)T (XEn) = EnXTXEn and λ
is its eigenvalue. So top k eigenvalues of XEnXT remains the same for EnXTXEn. Therefore
EnXTu1, . . .EnXTuk are top k eigenvectors of EnXTXEn. They are orthogonal but they do
not have unit norm:

uT (XEn)(XEn)Tu = uTλu = λ.

Therefore a normalization by 1√
λ
is needed. So top k eigenvectors of EnXTXEn is given by

1√
λ1

EnXTu1, . . . ,
1√
λk

EnXTuk. Therefore X∗MDS is given by:

X∗MDS =


√
λ1vT1
...√
λkvTk

 =


√
λ1( 1√

λ1
EnXTu1)T
...√

λk( 1√
λk

EnXTuk)T

 =


XEnuT1

...
XEnuTk

 = UT
kXEn.

But we have seen above that UT
kXEn is X∗PCA and therefore the desired result follows.



Solution of Problem 3
Consider four samples in R3 given as follows:

x1 =

 1
2
−3

 ,x2 =

 3
−1
−2

x3 =

−4
2
2

x4 =

−3
−1
4

 .
MDS steps are as follows:

a) Find EnXTXEn where X = [x1 . . .xn].
In this step, X is obtained as:

X =

 1 3 −4 −3
2 −1 2 −1
−3 −2 2 4


We have:

EnXTXEn =


15.875 11.625 −9.125 −18.375
11.625 21.375 −18.375 −14.625
−9.125 −18.375 15.875 11.625
−18.375 −14.625 11.625 21.375


b) Find spectral decomposition of EnXTXEn = V diag(λ1, . . . , λn)VT .

For this example eigenvalues and eigenvectors are given by:

diag(λ1, . . . , λn) =


61

13.5
0
0



V =


−0.45267873 0.5 −0.65666815 0.25502096
−0.54321448 −0.5 −0.31320188 −0.63102251
0.45267873 0.5 −0.28197767 −0.71157191
0.54321448 −0.5 −0.62544394 0.17447155


c) X∗ is given by [

√
λ1v1, . . . ,

√
λkvk]T .

X∗T =


−3.53553391 1.83711731
−4.24264069 −1.83711731
3.53553391 1.83711731
4.24264069 −1.83711731


Checking with PCA process, similar output is found.


