

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 7 - Proposed Solution -

Friday, November 30, 2018

Solution of Problem 1

a) Note that:

$$
\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \mathbf{x}_i^T \mathbf{x}_i + \mathbf{x}_j^T \mathbf{x}_j - 2\mathbf{x}_i^T \mathbf{x}_j^T.
$$

It is easy to check that:

$$
(\mathbf{X}\mathbf{X}^T)_{ij} = \mathbf{x}_i\mathbf{x}_j^T.
$$

Consider $\hat{\mathbf{x}} = \frac{1}{2}$ $\frac{1}{2} [\mathbf{x}_1^T \mathbf{x}_1, \dots, \mathbf{x}_n^T \mathbf{x}_n]^T$. We have:

$$
\mathbf{1}_n \hat{\mathbf{x}}^T = \begin{bmatrix} \frac{1}{2} \mathbf{x}_1^T \mathbf{x}_1 & \cdots & \frac{1}{2} \mathbf{x}_n^T \mathbf{x}_n \\ \frac{1}{2} \mathbf{x}_1^T \mathbf{x}_1 & \cdots & \frac{1}{2} \mathbf{x}_n^T \mathbf{x}_n \\ \vdots & \ddots & \vdots \\ \frac{1}{2} \mathbf{x}_1^T \mathbf{x}_1 & \cdots & \frac{1}{2} \mathbf{x}_n^T \mathbf{x}_n \end{bmatrix}
$$

This means that $(\mathbf{1}_n \hat{\mathbf{x}}^T)_{ij} = \frac{1}{2}$ $\frac{1}{2}\mathbf{x}_j^T\mathbf{x}_j$ and moreover $(\hat{\mathbf{x}}\mathbf{1}_n^T)_{ij} = \frac{1}{2}$ $\frac{1}{2}\mathbf{x}_i^T\mathbf{x}_i$ Therefore:

$$
\left(-\frac{1}{2}\mathbf{D}^{(2)}(\mathbf{X})\right)_{ij} = (\mathbf{X}\mathbf{X})_{ij} - (\mathbf{1}_n\hat{\mathbf{x}}^T)_{ij} - (\hat{\mathbf{x}}\mathbf{1}_n^T)_{ij}.
$$

The element-wise identity implies the desired identity.

b) Since $-\frac{1}{2}\mathbf{E}_n\mathbf{\Delta}^{(2)}\mathbf{E}_n$ is non-negative definite and has the rank $\text{rk}\left(-\frac{1}{2}\mathbf{E}_n\mathbf{\Delta}^{(2)}\mathbf{E}_n\right) \leq k$, it can be written as:

$$
-\frac{1}{2}\mathbf{E}_n\mathbf{\Delta}^{(2)}\mathbf{E}_n=\sum_{i=1}^k\lambda_i\mathbf{v}_i\mathbf{v}_i^T,
$$

where $\lambda_1 \geq \cdots \geq \lambda_k$ are top *k* eigenvalues of the matrix $-\frac{1}{2} \mathbf{E}_n \mathbf{\Delta}^{(2)} \mathbf{E}_n$ with corresponding orthonormal eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. This can be obtained from spectral decomposition of $-\frac{1}{2}\mathbf{E}_n\mathbf{\Delta}^{(2)}\mathbf{E}_n$. Using this representation, the matrix **X** can be constructed as **X** = $[\sqrt{\lambda_1} \mathbf{v}_1, \dots, \sqrt{\lambda_k} \mathbf{v}_k]$. It can be seen that:

$$
\mathbf{X}\mathbf{X}^T = \sum_{i=1}^k \lambda_i \mathbf{v}_i \mathbf{v}_i^T = -\frac{1}{2} \mathbf{E}_n \mathbf{\Delta}^{(2)} \mathbf{E}_n.
$$

Moreover the image of $-\frac{1}{2}\mathbf{E}_n\mathbf{\Delta}^{(2)}\mathbf{E}_n$ is a subset of the image of \mathbf{E}_n . Therefore for all non-zero λ_i , the corresponding eigenvector \mathbf{v}_i belongs to the image of \mathbf{E}_n and since it is an orthogonal projection:

$$
\mathbf{E}_n \mathbf{v}_i = \mathbf{v}_i.
$$

If $\lambda_i = 0$, then trivially \mathbf{E}_n √ $\overline{\lambda_i} \mathbf{v}_i =$ √ $\lambda_i \mathbf{v}_i = 0$. This means that:

$$
\mathbf{E}_n \mathbf{X} = \mathbf{X} \implies \mathbf{X}^T \mathbf{E}_n = \mathbf{X}^T.
$$

c) The direction where $\mathbf{A} = 0$ is trivial. Let us assume $\mathbf{E}_n \mathbf{A} \mathbf{E}_n = 0$. This means that the matrix **A** takes each vector in the image of \mathbf{E}_n to the kernel of \mathbf{E}_n . Note that the kernel of \mathbf{E}_n is spanned by $\mathbf{1}_n$, so for each **v** such that $\mathbf{v}^T \mathbf{1}_n = 0$, we have:

$$
\exists \alpha \in \mathbb{R}; \mathbf{A}\mathbf{v} = \alpha \mathbf{1}_n.
$$

Pich $\mathbf{v} = \mathbf{e}_i - \mathbf{e}_j$. The equation above implies that $(\mathbf{A}\mathbf{v})_i = (\mathbf{A}\mathbf{v})_j$. But $(\mathbf{A}\mathbf{v})_k = a_{ki} - a_{kj}$. Therefore:

$$
a_{ii} - a_{ij} = a_{ji} - a_{jj}.
$$

But $a_{kk} = 0$ for all $1 \leq k \leq n$ and **A** is symmetric. Therefore $a_{ij} = 0$ for all *i*, *j* which means that $\mathbf{A} = 0$.

Solution of Problem 2

a) First of all, note that:

$$
\overline{\mathbf{x}} = \frac{1}{n} \mathbf{X} \mathbf{1}_n.
$$

Moreover:

$$
\mathbf{S}_n = \frac{1}{n-1} (\mathbf{X} - \overline{\mathbf{x}} \mathbf{1}_n^T) (\mathbf{X} - \overline{\mathbf{x}} \mathbf{1}_n^T)^T.
$$

Therefore:

$$
\mathbf{S}_n = \frac{1}{n-1} (\mathbf{X} - \frac{1}{n} \mathbf{X} \mathbf{1}_n \mathbf{1}_n^T) (\mathbf{X} - \frac{1}{n} \mathbf{X} \mathbf{1}_n \mathbf{1}_n^T)^T = \frac{1}{n-1} \mathbf{X} \mathbf{E}_n \mathbf{E}_n^T \mathbf{X}^T.
$$

Using $\mathbf{E}_n \mathbf{E}_n = \mathbf{E}_n$, we have \mathbf{S}_n is equal to $\frac{1}{n-1} \mathbf{X} \mathbf{E}_n \mathbf{X}^T$.

b) The result of PCA is $Q(x_i - \overline{x})$. This is indeed equal to $Q(x_i - \frac{1}{n}X1_n)$. Constructing the matrix \bf{X} as suggested, the projected points can be written as:

$$
\mathbf{Q}(\mathbf{X} - \frac{1}{n}\mathbf{X}\mathbf{1}_n\mathbf{1}_n^T) = \mathbf{Q}\mathbf{X}\mathbf{E}_n.
$$

c) Let the singular value decomposition of **XE***ⁿ* be:

$$
\mathbf{X}\mathbf{E}_n=\mathbf{U}_{p\times p}\mathbf{\Lambda}\mathbf{V}_{n\times p}^{\ \ T}.
$$

It is known that:

$$
\mathbf{S}_n = \frac{1}{n-1} \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^T,
$$

and top k eigenvectors of \mathbf{S}_n are given therefore by picking first k columns of \mathbf{U} , denoted by U_k . In any case, we have:

$$
\mathbf{U}_k^T \mathbf{X} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{x}_1 & \dots & \mathbf{u}_1^T \mathbf{x}_n \\ \vdots & \ddots & \vdots \\ \mathbf{u}_k^T \mathbf{x}_1 & \dots & \mathbf{u}_k^T \mathbf{x}_n \end{bmatrix} = [\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n],
$$

where $\hat{\mathbf{x}}_i$ is the projected point into the *k* dimensional subspace. From the previous point, the projected points are given by $\mathbf{U}_k^T \mathbf{X} \mathbf{E}_n$.

See that:

$$
\mathbf{U}_k^T \mathbf{X} \mathbf{E}_n = \mathbf{U}_k^T \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T.
$$

But :

$$
\mathbf{U}_k^T \mathbf{U} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{u}_1 & \dots & \mathbf{u}_1^T \mathbf{u}_p \\ \vdots & \ddots & \vdots \\ \mathbf{u}_k^T \mathbf{u}_1 & \dots & \mathbf{u}_k^T \mathbf{u}_p \end{bmatrix} = [\mathbf{I}_k \ \mathbf{0}_{k \times p-k}].
$$

Using the fact that $\Lambda_{ii}^2 = \lambda_i$, we have:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \mathbf{\Lambda} = [\mathbf{I}_{k} \quad \mathbf{0}_{k \times p-k}] \mathbf{\Lambda} = [\text{diag}(\sqrt{\lambda_{1}}, \sqrt{\lambda}_{2}, \ldots, \sqrt{\lambda}_{k})_{k \times k} \quad \mathbf{0}_{k \times p-k}]
$$

Now write $\mathbf{V} = [\mathbf{v}_1 \dots \mathbf{v}_p]$ where $\mathbf{v}_i \in \mathbb{R}^n$. We have:

$$
\mathbf{U}_{k}^{T} \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{T} = [\text{diag}(\sqrt{\lambda_{1}}, \sqrt{\lambda}_{2}, \dots, \sqrt{\lambda}_{k})_{k \times k} \quad \mathbf{0}_{k \times p-k}] \mathbf{V}^{T} = \begin{bmatrix} \sqrt{\lambda_{1}} \mathbf{v}_{1}^{T} \\ \vdots \\ \sqrt{\lambda_{k}} \mathbf{v}_{k}^{T} \end{bmatrix}
$$

d) MDS starts by finding $-\frac{1}{2}\mathbf{E}_n\mathbf{D}^{(2)}\mathbf{E}_n$ which is $\mathbf{E}_n\mathbf{X}^T\mathbf{X}\mathbf{E}_n$ for Euclidean distance matrix. The spectral decomposition of $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n$ is then found by $\hat{\mathbf{V}}$ diag($\lambda_1, \ldots, \lambda_n$) $\hat{\mathbf{V}}^T$ where $\hat{\mathbf{V}} = [\hat{\mathbf{v}}_1 \dots \hat{\mathbf{v}}_n]$ is the eigenvector matrix. Using SVD of $\mathbf{X}\mathbf{E}_n$ above we get:

$$
\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^T.
$$

Therefore if $\mathbf{V} = [\mathbf{v}_1 \dots \mathbf{v}_p]$, then for $i = 1, \dots, p$ we have:

 $\hat{\mathbf{v}}_i = \mathbf{v}_i.$ The solution to MDS is then $\mathbf{X}^{*T} = [\sqrt{\lambda_1} \mathbf{v}_1, \dots, \sqrt{\lambda_k} \mathbf{v}_k] \in \mathbb{R}^{n \times k}$. This means that: $\mathbf{U}_k^T \mathbf{U} \mathbf{\Lambda} \mathbf{V}^T = \mathbf{X}^*$.

It shows that applying MDS on the distance matrix $D(X)$ provides the same result as PCA.

Remark: There is another way of showing this equivalence. Note that $S_n = \frac{1}{n-1} X E_n X^T$ and let $\mathbf{U}\Lambda\mathbf{U}^T$ be its spectral decomposition. Suppose that (λ, \mathbf{u}) is eigenvalue-eigenvector of $\mathbf{X}\mathbf{E}_n\mathbf{X}^T = (\mathbf{X}\mathbf{E}_n)(\mathbf{X}\mathbf{E}_n)^T$. Then:

$$
(\mathbf{X}\mathbf{E}_n)^T(\mathbf{X}\mathbf{E}_n)(\mathbf{X}\mathbf{E}_n)^T\mathbf{u} = \lambda(\mathbf{X}\mathbf{E}_n)^T\mathbf{u}.
$$

This means that $(\mathbf{X}\mathbf{E}_n)^T\mathbf{u} = \mathbf{E}_n\mathbf{X}^T\mathbf{u}$ is an eigenvector of $(\mathbf{X}\mathbf{E}_n)^T(\mathbf{X}\mathbf{E}_n) = \mathbf{E}_n\mathbf{X}^T\mathbf{X}\mathbf{E}_n$ and λ is its eigenvalue. So top *k* eigenvalues of $\mathbf{X}\mathbf{E}_n\mathbf{X}^T$ remains the same for $\mathbf{E}_n\mathbf{X}^T\mathbf{X}\mathbf{E}_n$. Therefore $\mathbf{E}_n \mathbf{X}^T \mathbf{u}_1, \dots \mathbf{E}_n \mathbf{X}^T \mathbf{u}_k$ are top *k* eigenvectors of $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n$. They are orthogonal but they do not have unit norm:

$$
\mathbf{u}^T(\mathbf{X}\mathbf{E}_n)(\mathbf{X}\mathbf{E}_n)^T\mathbf{u} = \mathbf{u}^T\lambda\mathbf{u} = \lambda.
$$

Therefore a normalization by $\frac{1}{\sqrt{2}}$ $\frac{1}{\lambda}$ is needed. So top *k* eigenvectors of $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n$ is given by $\frac{1}{6}$ $\frac{1}{\lambda_1}\mathbf{E}_n\mathbf{X}^T\mathbf{u}_1,\ldots,\frac{1}{\sqrt{\lambda}}$ $\frac{1}{\lambda_k} \mathbf{E}_n \mathbf{X}^T \mathbf{u}_k$. Therefore $\mathbf{X}_{\text{MDS}}^*$ is given by:

$$
\mathbf{X}_{\mathrm{MDS}}^* = \begin{bmatrix} \sqrt{\lambda_1} \mathbf{v}_1^T \\ \vdots \\ \sqrt{\lambda_k} \mathbf{v}_k^T \end{bmatrix} = \begin{bmatrix} \sqrt{\lambda_1} (\frac{1}{\sqrt{\lambda_1}} \mathbf{E}_n \mathbf{X}^T \mathbf{u}_1)^T \\ \vdots \\ \sqrt{\lambda_k} (\frac{1}{\sqrt{\lambda_k}} \mathbf{E}_n \mathbf{X}^T \mathbf{u}_k)^T \end{bmatrix} = \begin{bmatrix} \mathbf{X} \mathbf{E}_n \mathbf{u}_1^T \\ \vdots \\ \mathbf{X} \mathbf{E}_n \mathbf{u}_k^T \end{bmatrix} = \mathbf{U}_k^T \mathbf{X} \mathbf{E}_n.
$$

But we have seen above that $\mathbf{U}_k^T \mathbf{X} \mathbf{E}_n$ is X_{PCA}^* and therefore the desired result follows.

Solution of Problem 3

Consider four samples in \mathbb{R}^3 given as follows:

$$
\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix} \mathbf{x}_3 = \begin{bmatrix} -4 \\ 2 \\ 2 \end{bmatrix} \mathbf{x}_4 = \begin{bmatrix} -3 \\ -1 \\ 4 \end{bmatrix}.
$$

MDS steps are as follows:

a) Find $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n$ where $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_n].$ In this step, **X** is obtained as:

$$
\mathbf{X} = \begin{bmatrix} 1 & 3 & -4 & -3 \\ 2 & -1 & 2 & -1 \\ -3 & -2 & 2 & 4 \end{bmatrix}
$$

We have:

$$
\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n = \begin{bmatrix} 15.875 & 11.625 & -9.125 & -18.375 \\ 11.625 & 21.375 & -18.375 & -14.625 \\ -9.125 & -18.375 & 15.875 & 11.625 \\ -18.375 & -14.625 & 11.625 & 21.375 \end{bmatrix}
$$

b) Find spectral decomposition of $\mathbf{E}_n \mathbf{X}^T \mathbf{X} \mathbf{E}_n = \mathbf{V} \text{diag}(\lambda_1, \dots, \lambda_n) \mathbf{V}^T$. For this example eigenvalues and eigenvectors are given by:

diag(
$$
\lambda_1, ..., \lambda_n
$$
) =
$$
\begin{bmatrix} 61 \\ 13.5 \\ 0 \\ 0 \end{bmatrix}
$$

$$
\mathbf{V} = \begin{bmatrix} -0.45267873 & 0.5 & -0.65666815 & 0.25502096 \\ -0.54321448 & -0.5 & -0.31320188 & -0.63102251 \\ 0.45267873 & 0.5 & -0.28197767 & -0.71157191 \\ 0.54321448 & -0.5 & -0.62544394 & 0.17447155 \end{bmatrix}
$$

c) X[∗] is given by [$\sqrt{\lambda_1} \mathbf{v}_1, \ldots, \sqrt{\lambda_k} \mathbf{v}_k]^T$.

$$
\mathbf{X}^{*T} = \begin{bmatrix} -3.53553391 & 1.83711731 \\ -4.24264069 & -1.83711731 \\ 3.53553391 & 1.83711731 \\ 4.24264069 & -1.83711731 \end{bmatrix}
$$

Checking with PCA process, similar output is found.