

Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 9 - Proposed Solution - Friday, December 21, 2018

Solution of Problem 1

Note that the discriminant rule is to allocate **x** to the group 1 if $|\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_1| < |\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_2|$ with $\mathbf{a} = \mathbf{W}^{-1}(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)$. See that:

$$
\mathbf{a}^T(\mathbf{x} - \overline{\mathbf{x}}_1) = \mathbf{a}^T(\mathbf{x} - \overline{\mathbf{x}}_2) + \mathbf{a}^T(\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1),
$$

and note that since **W**[−]¹ is nonnegative definite, we have:

$$
\mathbf{a}^T(\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1) = (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T \mathbf{W}^{-1}(\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1) \le 0,
$$

hence $\mathbf{a}^T(\mathbf{x} - \overline{\mathbf{x}}_1) \leq \mathbf{a}^T(\mathbf{x} - \overline{\mathbf{x}}_2)$. We have three cases:

- If $\mathbf{a}^T(\mathbf{x}-\overline{\mathbf{x}}_1) > 0$, then $|\mathbf{a}^T\mathbf{x}-\mathbf{a}^T\overline{\mathbf{x}}_1| < |\mathbf{a}^T\mathbf{x}-\mathbf{a}^T\overline{\mathbf{x}}_2|$, and the discriminant rule implies that **x** is allocated to C_1 .
- If $\mathbf{a}^T(\mathbf{x}-\overline{\mathbf{x}}_2) < 0$, then $|\mathbf{a}^T\mathbf{x}-\mathbf{a}^T\overline{\mathbf{x}}_1| > |\mathbf{a}^T\mathbf{x}-\mathbf{a}^T\overline{\mathbf{x}}_2|$, and the discriminant rule implies that **x** is allocated to C_2 .
- If $\mathbf{a}^T(\mathbf{x} \overline{\mathbf{x}}_2) > 0$ and $\mathbf{a}^T(\mathbf{x} \overline{\mathbf{x}}_1) < 0$, the discriminant rule implies that **x** is allocated to C_1 if :

$$
\mathbf{a}^T(-\mathbf{x} + \overline{\mathbf{x}}_1) < \mathbf{a}^T(\mathbf{x} - \overline{\mathbf{x}}_2) \implies \mathbf{a}^T(2\mathbf{x} - \overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1) > 0
$$

Now just see that if $\mathbf{a}^T(\mathbf{x}-\overline{\mathbf{x}}_1) > 0$, then $\mathbf{a}^T(2\mathbf{x}-\overline{\mathbf{x}}_2-\overline{\mathbf{x}}_1) > 0$. And if $\mathbf{a}^T(\mathbf{x}-\overline{\mathbf{x}}_2) < 0$, then $\mathbf{a}^T(2\mathbf{x} - \overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1) < 0.$

Another solution:

First of all, the discriminant rule can be simplified as follows:

$$
|\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_1| < |\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_2| \implies
$$

$$
(\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_1)^2 < (\mathbf{a}^T \mathbf{x} - \mathbf{a}^T \overline{\mathbf{x}}_2)^2 \implies
$$

$$
(\mathbf{x} - \overline{\mathbf{x}}_1)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_1) < (\mathbf{x} - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_2).
$$

Note that:

$$
(\mathbf{x} - \overline{\mathbf{x}}_1)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_1) = (\mathbf{x} - \overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)
$$

\n
$$
= (\mathbf{x} - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_2) + (\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_1)
$$

\n
$$
+ (\mathbf{x} - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)
$$

\n
$$
= (\mathbf{x} - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_2) + (\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_1)
$$

\n
$$
+ (\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_2)
$$

\n
$$
= (\mathbf{x} - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (\mathbf{x} - \overline{\mathbf{x}}_2) - (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (2\mathbf{x} - \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)
$$

Using this equlity in the discriminant rule, we obtain the rule as:

$$
(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)^T \mathbf{a} \mathbf{a}^T (2\mathbf{x} - \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) > 0.
$$

However since W^{-1} is nonnegative definite (see above), $(\bar{x}_1 - \bar{x}_2)^T a > 0$ and therefore it suffices that:

$$
\mathbf{a}^T(2\mathbf{x} - \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) > 0.
$$

Solution of Problem 2

The ML discriminant rule for classification into two classes C_1 and C_2 allocates **x** to C_1 if:

$$
f_1(\mathbf{x}) > f_2(\mathbf{x}),
$$

or equivalently if:

$$
(\mathbf{x}-\boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu}_1) < (\mathbf{x}-\boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu}_2).
$$

Note that:

$$
(\mathbf{x} - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) = (\mathbf{x} - \boldsymbol{\mu}_2 + \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_2 + \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)
$$

\n
$$
= (\mathbf{x} - \boldsymbol{\mu}_2)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) + (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)
$$

\n
$$
+ (\mathbf{x} - \boldsymbol{\mu}_2)^T \Sigma^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)
$$

\n
$$
= (\mathbf{x} - \boldsymbol{\mu}_2)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) + (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)
$$

\n
$$
+ (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_2)
$$

\n
$$
= (\mathbf{x} - \boldsymbol{\mu}_2)^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \Sigma^{-1} (2\mathbf{x} - \boldsymbol{\mu}_1 - -\boldsymbol{\mu}_2)
$$

Using this equlity in the discriminant rule, we have:

$$
(\mu_1 - \mu_2)^T \Sigma^{-1} (2\mathbf{x} - \mu_1 - -\mu_2) > 0,
$$

which is the desired expression.

Solution of Problem 3

Note that $\mathbf{B} = \sum_{l=1}^{g} n_l (\overline{\mathbf{x}}_l - \overline{\mathbf{x}})(\overline{\mathbf{x}}_l - \overline{\mathbf{x}})^T$ and $\mathbf{W} = \sum_{l=1}^{g} \mathbf{X}_l^T \mathbf{E}_l \mathbf{X}_l$. But the crucial identity for this problem is the followin:

$$
\mathbf{S} = \mathbf{B} + \mathbf{W}.
$$

First of all, let (λ, \mathbf{v}) be eigenvalue-eigenvector pair for the matrix $\mathbf{W}^{-1}\mathbf{B}$. We have:

$$
\mathbf{W}^{-1}\mathbf{S} = \mathbf{W}^{-1}\mathbf{B} + \mathbf{I} \implies \mathbf{W}^{-1}\mathbf{S}\mathbf{v} = \mathbf{W}^{-1}\mathbf{B}\mathbf{v} + \mathbf{v} = (\lambda + 1)\mathbf{v}.
$$

Therefore $(\lambda + 1, \mathbf{v})$ is an eigenvalue-eigenvector pair for $\mathbf{W}^{-1}\mathbf{S}$. Moreover it can be seen that

$$
\mathbf{W}^{-1}\mathbf{S}\mathbf{v} = (\lambda + 1)\mathbf{v} \implies v = (\lambda + 1)\mathbf{S}^{-1}\mathbf{W}\mathbf{v},
$$

which means that $(\frac{1}{\lambda+1}, \mathbf{v})$ is an eigenvalue-eigenvector pair for $\mathbf{S}^{-1}\mathbf{W}$. Therefore the equivalence of three eigenvectors follow these discussions.