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Solution of Problem 1
(Support Vector Machine with Only One Member per Class) Let the dataset consist of only
two points, (x1, y1 = +1) and (x2, y2 = −1). See that

aT x1 + b ≥ 1
−aT x2 − b ≥ 1.

Adding those inequalities provide

aT (x1 − x2) ≥ 2 =⇒ ‖a‖2‖x1 − x2‖2 ≥ 2.

Therefore ‖a‖2, the objective function of the classifier achieves the minimum 2
‖x1−x2‖2

for

a = 2(x1 − x2)
‖x1 − x2‖2

2
.

On the other side, we have:

aT x1 + b ≥ 1 =⇒ 2(xT
1 x1 − xT

2 x1)
‖x1 − x2‖2

2
+ b ≥ 1

=⇒ b ≥ (xT
2 x2 − xT

1 x1)
‖x1 − x2‖2

2
.

and

−aT x2 − b ≥ 1 =⇒ −2(xT
1 x2 − xT

2 x2)
‖x1 − x2‖2

2
− b ≥ 1

=⇒ b ≤ (xT
2 x2 − xT

1 x1)
‖x1 − x2‖2

2
.

which means that
b = xT

2 x2 − xT
1 x1

‖x1 − x2‖2
2

.

The SVM classifier is given by:
2(xT

1 x− xT
2 x)

‖x1 − x2‖2
2

+ xT
2 x2 − xT

1 x1

‖x1 − x2‖2
2

≷y=1
y=−1 0.

However a bit of manipulation shows that:

‖x− x2‖2 ≷y=1
y=−1 ‖x− x1‖2.



Solution of Problem 2
(Support Vector Machine Margin) Let the dataset consist of points, (xi, yi = +1), i = 1, 2 and
(x3, y3 = −1). Suppose that these points are linearly separable.

a) First of all, we have:

aT x1 + b ≥ 1
aT x2 + b ≥ 1
−aT x3 − b ≥ 1.

From these inequalities we obtain:

aT (x1 − x3) ≥ 2 =⇒ ‖a‖2‖x1 − x3‖2 ≥ 2.

aT (x2 − x3) ≥ 2 =⇒ ‖a‖2‖x2 − x3‖2 ≥ 2.

Therefore ‖a‖2 should satisfy the all the previous inequalities and be strictly bigger
that max( 2

‖x1−x3‖2
, 2
‖x2−x3‖2

). Without loss of generality, assume this is obtained by x1.
Consider the following choice:

a = 2(x1 − x3)
‖x1 − x3‖2

2
.

Although this achieves the minimum possible value of those inequalities, it might lead to
a classifier that does not correctly classify the training points or violate the constraint
above. From this a, we can find the corresponding b as follows and then check to see if
this choice can correctly classify the training data. We have:

aT x1 + b ≥ 1 =⇒ 2(xT
1 x1 − xT

3 x1)
‖x1 − x3‖2

2
+ b ≥ 1

=⇒ b ≥ xT
3 x3 − xT

1 x1

‖x1 − x3‖2
2

.

and

−aT x3 + b ≥ 1 =⇒ −2(xT
1 x3 − xT

3 x3)
‖x1 − x3‖2

2
− b ≥ 1

=⇒ b ≤ xT
3 x3 − xT

1 x1

‖x1 − x3‖2
2

.

Therefore b is given by:

b = xT
3 x3 − xT

1 x1

‖x1 − x3‖2
2

.

Since b is obtained to satisfy two of the constraints, we need only to check the other one:

aT x2 + b ≥ 1

This is equal to
‖x2 − x3‖2

2 ≥ ‖x1 − x3‖2
2 + ‖x1 − x2‖2

2.

But this is true for points that create obtuse triangle hence this is the correct choice
and the margin is given by the distance of x1 and x3.

b) If the points form an acute triangle, the last inequality above can never be satisfied due
to triangle inequality.



Solution of Problem 3
SVM equivalent formulations: We repeat the SVM problem as follows:

arg min
a∈Rp,b∈R

1
2‖a‖

2 s.t. yi(aT xi + b) ≥ 1, i = 1, . . . , n

We show first that this problem is equivalent to the following problems.

a) If the data is separable, there is a separating hyperplane correctly classifying the
instances. For each of these hyperplanes aT x + b = 0 with ‖a‖ = 1, the distance of
the training point xi to the hyperplane is given by |aT xi + b|. The margin is given by
min |aT xi + b|. If the classification is correct, we have:

yi(aT xi + b) = |aT xi + b|

Furthermore for any hyperplane with misclassification we have min yi(aT xi + b) < 0.
Therefore any solution to the optimization problem

arg max
a∈Rp,b∈R,‖a‖=1

min
i∈{1,...,n}

yi(aT xi + b)

will have zero classification error and maximum margin.

b) Note that the problem above looks for (a, b) such that the training error is zero and
the margine is maximized. For a pair (a, b), the separating hyperplane is given by
aT x + b = 0. Assume ‖a‖ = 1. The distance of the training point xi to the hyperplane
is given by |aT xi + b|. There for the smallest distance to the hyperplane is given by
mini∈{1,...,n} |aT xi + b|. Therefore this distance should be maximized while the training
points are classified correctly, which means that:

arg max
a∈Rp,b∈R,‖a‖=1

min
i∈{1,...,n}

|aT xi + b| s.t. yi(aT xi + b) > 0, i = 1, . . . , n


