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Problem 1. (15 points)
Dimensionality Reduction:
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Then the rank of A = 2.

b)
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Then,
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d) Components in the first dimension:
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Components in the second dimension:
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Then the points in 2D are u1 = (2
3 ,

1
3),u2 = (1, 2

3),u3 = (2
3 ,

2
3).
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e) As ε→ 0, W tends to W = In. This leads to deg(i) = 1 for all i, thus M = W. Finally,
we get

(ε→ 0) ⇒ ‖M‖2
F = ‖W‖2

F = n .

Similarlly for ε→∞ we get W = 1n×n, thus M = 1
n
W. This leads to

(ε→∞) ⇒ ‖M‖2
F = 1

n2‖W‖
2
F = 1

n2 (n2) = 1 .







Problem 2. (15 points)
Classification and Clustering

Data Group Data Group
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a) Use x1,x2,x3,x4 to obtain two cluster centers for k-means. (2P)

µ1 = 1
2(x1 + x2) =

0
1
1

 , µ2 = 1
2(x3 + x4) =

 0
−1
−1


b) Use the obtained cluster centers to assign labels to x5,x6. (2P)

‖x5 − µ1‖2 = 3
2
√
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2
√

2 ⇒ x5 ∈ C2 (1)
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2
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2
√

2 ⇒ x6 ∈ C1 (2)

Assume that linear discriminant analysis on the dataset {x1,x2,x3,x4} provides the discrimi-
nant vector
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c) Calculate the sum of squares within groups for x1,x2,x3,x4. (4P)
By definition yi = aT xi, yielding
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The within group averages are
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Lets denote the sum of of squares within groups as γW ∈ R. By definition we get
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d) Calculate the sum of squares between groups for x1,x2,x3,x4. (4P)
Then the general discriminant average is y = 1

4(y1 + y2 + y3 + y4) = 0. Lets denote the
sum of of squares between groups as γB ∈ R. By definition we get

γB =
2∑
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nl y
2
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5 + 22
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e) Use the obtained a∗ to assign a label to x5,x6. (3P)
For two classes, the discriminant rule is

aT (x− 1
2(x1 + x2)) ≷ 0 .

Therefore we have

aT (x5 −
1
2(x1 + x2)) = ⇒ x5 ∈ C2

aT (x6 −
1
2(x1 + x2)) = ⇒ x6 ∈ C1







Problem 3. (15 points)
Support Vector Machines:

a) (4P) The support vectors are given by all vectors with λi 6= 0, namely:

x1 =
(

1
0

)
,x3 =

(
0
2

)
,x4 =

(
0
0

)
,x5 =

(
1
−3

)
.

b) First let’s find a?:
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To find b, take two support vectors xk and xl with yk = 1 and yl = −1 with 0 < λ < 1.
For these support vectors, we have yi(aT xi + b) = 1. Hence:
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c) (2P)
First see:

(a?)T u + b? =
(
−0.88 −0.6

)(1
1

)
+ 0.14 = −1.34 < 0,

hence yu = −1. Finally:
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hence yv = −1.

d) (3P) The kernel function can be expanded as
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So a feature map can be constructed as
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Problem 4. (15 points)

Linear Regression: A training set with input-output pairs (xi, yi), i ∈ {1, 2, 3, 4}, is given
in the following table.

i input xi output yi

i=1 -5 -18
i=2 -2 -9
i=3 1 -1
i=4 4 12

a) To use the linear regression algorithm, we need to find following parameters:

x̄ = −5− 2 + 1 + 4
4 = −0.5 (1P)

ȳ = −18− 9− 1 + 12
4 = −4 (1P)

σxy = −5×−18− 2×−9 + 1×−1 + 4× 12
4 − (−0.5)×−4 = 36.75 (1P)

σ2
x = 25 + 4 + 1 + 16

4 − (−0.5)2 = 11.25 (1P)

Thus, the regression coefficients are

ν̂1 = σxy

σ2
x

= 36.75
11.25 = 3.27, (1.5P)

ν̂0 = ȳ − ν̂1x̄ = −4− 3.27× (−0.5) = −2.365 (1.5P).

The model is given by:
y = ν̂1x+ ν̂0,

which for x5 = 0 predicts y = −2.365 ( (1P)).

b) See that:

XT X =
(

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x
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i .

)
=
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6 12
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)
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(
1 2
2 8

)
..

Hence we have n = 6 (1P) and

x̄ = 12
6 = 2. (1P)

σ2
x = 48

6 − 22 = 8− 4 = 4. (2P)

c) See that first of all:

(XT X)−1 = 1
24

(
8 −2
−2 1

)
. (1P)

XT y =
(
−3
1

)
.



Using the above two inequalities, we can get:

ν = (XT X)−1XT y = 1
24

(
8 −2
−2 1

)
×
(
−3
1

)
= 1

24

(
−26

7

)
.

Hence:
y = ν1x+ ν0 = 7

24x−
26
24 . (2P)
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