



Prof. Dr. Rudolf Mathar, Dr.-Ing. Gholamreza Alirezaei, Emilio Balda, Vimal Radhakrishnan

> Tutorial 2 Monday, October 29, 2018

Problem 1. (Conditional Entropy)

Let X, Y, Z be discrete random variables. Proof that:

- **a)**  $0 \stackrel{(i)}{\leq} H(X|Y) \stackrel{(ii)}{\leq} H(X).$ 
  - Equality holds in  $(i) \Leftrightarrow X$  is totally dependent on Y.
  - Equality holds in  $(ii) \Leftrightarrow X$  and Y are independent.
- **b)**  $H(X|Y,Z) \le \min\{H(X|Y), H(X|Z)\}.$

## **Problem 2.** (Sequence of Random Variables)

Let  $X_0 \in \mathcal{X}$  be a discrete random variable with distribution  $\mu_0$ . Given the stochastic matrix  $\Pi$ , let  $X_1, X_2, \ldots$  be the sequence of random variables (with the same support  $\mathcal{X}$ ) such that  $\mu_n$  is the distribution<sup>1</sup> of  $X_n$  and  $\mu_n = \mu_{n-1} \Pi$  for all  $n = 1, 2, \ldots$ .

a) Show that  $\mu_n = \mu_0 \Pi^n$ .

Now assume that  $\mu_n$  converges to some distribution  $\mu^*$ , that is  $\lim_{n\to\infty} \mu_n = \mu^*$  and  $\mu^*\Pi = \mu^*$ .

- **b)** Proof that  $D(\mu_n \| \mu^*) \ge D(\mu_{n+1} \| \mu^*)$  for all n = 1, 2, ...
- c) Show that if  $\mu^*$  is the uniform distribution then  $H(X_n) \leq H(X_{n+1})$  for all n = 1, 2, ...

## **Problem 3.** (A Metric)

A function  $\rho(x, y)$  is a metric if for all x, y,

- $\rho(x,y) \ge 0$ ,
- $\rho(x,y) = \rho(y,x),$
- $\rho(x, y) = 0$  if and only if x = y,
- $\rho(x,y) + \rho(y,z) \ge \rho(x,z).$

<sup>&</sup>lt;sup>1</sup>Note that  $\mu_n$  are row vectors for all  $n = 0, 1, 2, \dots$ 

- a) Show that  $\rho(X, Y) = H(X|Y) + H(Y|X)$  satisfies the first, second and fourth properties above. If we say that X = Y if there is a one-to-one function mapping from X to Y, then the third property is also satisfied, and  $\rho(X, Y)$  is a metric.
- **b)** Verify that  $\rho(X, Y)$  can also be expressed as

$$\rho(X,Y) = H(X) + H(Y) - 2I(X;Y) = H(X,Y) - I(X;Y) = 2H(X,Y) - H(X) - H(Y)$$

## **Problem 4.** (A Measure of Correlation)

Let  $X_1$  and  $X_2$  be identically distributed random variables, but not necessarily independent. Let

$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)} \,.$$

- **a)** Show that  $\rho = \frac{I(X_1;X_2)}{H(X_1)}$ .
- **b)** Show that  $0 \le \rho \le 1$ .
- c) When is  $\rho = 0$ ?
- d) When is  $\rho = 1$ ?

## Problem 5. (Entropy of a Sum)

Let X and Y be random variables that take on values  $x_1, x_2, \ldots, x_r$  and  $y_1, y_2, \ldots, y_r$  respectively. Let Z = X + Y.

- a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent, then  $H(Y) \le H(Z)$  and  $H(X) \le H(Z)$ . Thus the addition of *independent* random variables adds uncertainty.
- b) Give an example of (necessarily dependent) random variables in which H(X) > H(Z)and H(Y) > H(Z).
- c) Under what conditions does H(Z) = H(X) + H(Y)?