

Tutorial 3 Monday, November 5, 2018

Problem 1. (*Relative Entropy*)

Let the random variable X have three possible outcomes $\{a, b, c\}$. Consider two distributions on this random variable:

- a) Calculate $H(\mathbf{p})$, $H(\mathbf{q})$, $D(\mathbf{p}||\mathbf{q})$, and $D(\mathbf{q}||\mathbf{p})$. Verify in this case $D(\mathbf{p}||\mathbf{q}) \neq D(\mathbf{q}||\mathbf{p})$.
- **b)** Although, $D(\mathbf{p}||\mathbf{q}) \neq D(\mathbf{q}||\mathbf{p})$ in general, there could be distributions for which equality holds. Give an example of two distributions \mathbf{p} and \mathbf{q} on a binary alphabet such that $D(\mathbf{p}||\mathbf{q}) = D(\mathbf{q}||\mathbf{p})$ (other than the trivial case $\mathbf{p} = \mathbf{q}$)).

Problem 2. (Fano's Ineuality)

Let $P(X = i) = p_i$, i = 1, 2, ..., m, and let $p_1 \ge p_2 \ge p_3 \ge ... \ge p_m$. The minimal probability of error predictor of X is $\hat{X} = 1$ (there is no knowledge of Y), with resulting probability of error $P_e = 1 - p_1$.

- a) Maximize $H(\mathbf{p})$ subject to the constraint $1 p_1 = P_e$ to find a lower bound on P_e in terms of $H(\mathbf{p})$.
- b) Find the probability vector $\mathbf{p} = (p_1, p_2, \dots, p_n)$ for which Fano's inequality is sharp i.e., $H(P_e) + P_e \log(m-1) = H(\mathbf{p}).$

Problem 3. (Bottle neck)

Suppose that a non-stationary Markov chain starts in one of the *n* states, necks down to k < n states, and then fans back to m > k states. Thus, $X_1 \to X_2 \to X_3$, that is, $p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$, for all $x_1 \in \{1, 2, ..., n\}, x_2 \in \{1, 2, ..., k\}, x_3 \in \{1, 2, ..., m\}$.

a) Show that the dependence of X_1 and X_3 is limited by the bottle neck by proving that $I(X_1; X_3) \leq \log k$.

b) Evaluate $I(X_1; X_3)$ for k = 1, and conclude that no dependence can survive such a bottle neck.

Problem 4. Prove $\ln(t) \le t - 1$ for $t \ge 0$