

Prof. Dr. Rudolf Mathar, Dr.-Ing. Gholamreza Alirezaei, Emilio Balda, Vimal Radhakrishnan

Tutorial 5 Monday, November 19, 2018

Problem 1. 2 state homogeneous Markov chain

Consider a 2 state homogeneous Markov chain with states $\{0, 1\}$ and transition matrix $\Pi = \begin{pmatrix} 1 - \alpha & 1 - \beta \\ \beta & \alpha \end{pmatrix}$.

Compute a stationary distribution $\mathbf{p} = (p_1, p_2)$. Hint: solve $\mathbf{p}\Pi = \mathbf{p}$

Problem 2. Recurrence times are insensitive to distributions

Let X_0, X_1, X_2, \dots are drawn i.i.d $\sim p(x), x \in \mathcal{X} = \{1, 2, 3, \dots, m\}$, and let N be the waiting time to the next occurrence of X_0 . Thus $N = \min_n \{X_n = X_0\}$.

- a) Show that EN = m
- **b)** Show that $E \log N \le H(X)$.

Hint: For 0 < r < 1 we have

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \quad \sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}.$$

Problem 3. Entropy rate of a dog looking for a bone.

A dog walks on the integers, possibly reversing direction at each step with probability p = 0.1. Let $X_0 = 0$. The first step is equally like to be positive or negative. A typical walk might look like this :

$$(X_0, X_1, \dots) = (0, -1, -2, -3, -4, -3, -2, -1, 0, 1, \dots)$$
(1)

- a) Find $H(X_1, X_2, ..., X_n)$.
- b) Find the entropy rate of the dog.
- c) What is the expected number of steps that the dog takes before reversing direction?

Problem 4. AEP

Let X_i be i.i.d $\sim p(x), x \in \mathcal{X} = \{1, 2, 3..., m\}$. Let $\mu = EX$ and $H = -\sum p(x) \log p(x)$. Let $A_{\epsilon}^n = \{(x_1, x_2, ..., x_n) \in \mathcal{X}^n : |-\frac{1}{n} \log p(x^n) - H| \le \epsilon\}$ and $B_{\epsilon}^n = \{(x_1, x_2, ..., x_n) \in \mathcal{X}^n : |\frac{1}{n} \sum_{i=1}^n x_i - \mu| \le \epsilon\}$.

- **a)** Does $P((X_1, X_2, ..., X_n) \in A_{\epsilon}^n) \to 1$?
- **b)** Does $P((X_1, X_2, ..., X_n) \in A^n_{\epsilon} \cap B^n_{\epsilon}) \to 1?$
- c) Show that $|A_{\epsilon}^n \cap B_{\epsilon}^n| \leq 2^{n(H+\epsilon)}$ for all n.
- **d)** Show that $|A_{\epsilon}^n \cap B_{\epsilon}^n| \ge (\frac{1}{2})2^{n(H-\epsilon)}$ for sufficiently large n.

Problem 5. AEP and mutual information

Let (X_i, Y_i) be i.i.d. $\sim p(x, y)$. We form the log likelihood ratio of the hypothesis that X and Y are independent vs. the hypothesis that X and Y are dependent, i.e.,

$$\frac{1}{n}\log\frac{p(X_1, X_2, \dots, X_n)p(Y_1, Y_2, \dots, Y_n)}{p(X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n)}.$$

What is the limit of this log likelihood ratio, when $n \to \infty$?