

Prof. Dr. Rudolf Mathar, Dr.-Ing. Gholamreza Alirezaei, Emilio Balda, Vimal Radhakrishnan

Tutorial 5 Monday, November 19, 2018

Problem 1. *2 state homogeneous Markov chain*

Consider a 2 state homogeneous Markov chain with states {0*,* 1} and transition matrix $\Pi = \begin{pmatrix} 1-\alpha & 1-\beta \\ \beta & \alpha \end{pmatrix}.$

Compute a stationary distribution $\mathbf{p} = (p_1, p_2)$.

Hint: solve $p\Pi = p$

Problem 2. *Recurrence times are insensitive to distributions*

Let *X*₀*, X*₁*, X*₂*,* are drawn i.i.d ∼ $p(x)$ *, x* ∈ *X* = {1*,* 2*,* 3*..., m*}*,* and let *N* be the waiting time to the next occurrence of X_0 . Thus $N = \min_n \{X_n = X_0\}.$

- **a**) Show that $EN = m$
- **b**) Show that $E \log N \leq H(X)$.

Hint: For $0 < r < 1$ we have

$$
\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \ \ \sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}.
$$

Problem 3. *Entropy rate of a dog looking for a bone*.

A dog walks on the integers, possibly reversing direction at each step with probability $p = 0.1$. Let $X_0 = 0$. The first step is equally like to be positive or negative. A typical walk might look like this :

$$
(X_0, X_1, \ldots) = (0, -1, -2, -3, -4, -3, -2, -1, 0, 1, \ldots)
$$
\n⁽¹⁾

- **a**) Find $H(X_1, X_2, \ldots, X_n)$.
- **b)** Find the entropy rate of the dog.
- **c)** What is the expected number of steps that the dog takes before reversing direction?

Problem 4. *AEP*

Let X_i be i.i.d ~ $p(x), x \in \mathcal{X} = \{1, 2, 3, \ldots, m\}$. Let $\mu = EX$ and $H = -\sum p(x) \log p(x)$. Let $A_{\epsilon}^{n} = \{(x_1, x_2, ..., x_n) \in \mathcal{X}^{n} : |-\frac{1}{n}\log p(x^n) - H| \leq \epsilon\}$ and $B_{\epsilon}^{n} = \{(x_1, x_2, ..., x_n) \in \mathcal{X}^{n} : |-\frac{1}{n}\log p(x^n) - H| \leq \epsilon\}$ $\frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} x_i - \mu \leq \epsilon$.

- **a**) Does $P((X_1, X_2, ..., X_n) \in A_{\epsilon}^n) \to 1$?
- **b**) Does $P((X_1, X_2, ..., X_n) \in A_{\epsilon}^n \cap B_{\epsilon}^n) \to 1$?
- **c**) Show that $|A_{\epsilon}^n \cap B_{\epsilon}^n| \leq 2^{n(H+\epsilon)}$ for all *n*.
- **d**) Show that $|A_{\epsilon}^n \cap B_{\epsilon}^n| \geq (\frac{1}{2})$ $\frac{1}{2}$) $2^{n(H-\epsilon)}$ for sufficiently large *n*.

Problem 5. *AEP and mutual information*

Let (X_i, Y_i) be i.i.d. $\sim p(x, y)$. We form the log likelihood ratio of the hypothesis that *X* and *Y* are independent vs. the hypothesis that *X* and *Y* are dependent, i.e.,

$$
\frac{1}{n} \log \frac{p(X_1, X_2, ..., X_n)p(Y_1, Y_2, ..., Y_n)}{p(X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n)}.
$$

What is the limit of this log likelihood ratio, when $n \to \infty$?