

Prof. Dr. Rudolf Mathar, Dr.-Ing. Gholamreza Alirezaei, Emilio Balda, Vimal Radhakrishnan

Tutorial 6 Monday, January 7, 2019

Problem 1. Differential entropy

Evaluate the differential entropy h(X) for the following:

- **a)** Guassian distributions with density, $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$.
- **b)** The exponential density, $f(x) = \lambda \exp(-\lambda x), x \ge 0$.
- c) The Laplace density, $f(x) = \frac{1}{2}\lambda \exp(-\lambda|x|)$.

Problem 2. Channel with uniform distributed noise

Consider a additive channel whose input alphabet $\mathcal{X} = \{0, \pm 1, \pm 2\}$ and whose output Y = X + Z, where Z is distributed uniformly over the interval [-1, 1]. Thus, the input of the channel is a discrete random variable, where as the output is continuous. Calculate the capacity $C = \max_{p(x)} I(X, Y)$ of this channel.

Problem 3. Quantized random variables

Roughly how many bits are required on the average to describe to three-digit accuracy the decay time (in years) of a radium atom if the half-life of the radium is 80 years? Note: The half-life is the median of the distribution.

Problem 4. Shape of the typical set

Let X_i be i.i.d $\sim f(x)$ where

$$f(x) = ce^{-x^4}. (1)$$

Let $h = -\int f \ln f$. Describe the shape/form or the typical set $A_{\epsilon}^n = \{(x_1, x_2, ..., x_n) \in \mathcal{R}^n : f(x_1, x_2, ..., x_n) \in (2^{-n(h+\epsilon)}, 2^{-n(h-\epsilon)})\}.$