

Tutorial 7 Monday, January 21, 2019

Problem 1. One bit quantization of a single Gaussian random variable

Let $X \sim \mathcal{N}(0, \sigma^2)$ and let the distortion measure be squared error. Here we do not allow block descriptions. Show that the optimum reproduction points for 1 bit quantization are $\pm \sqrt{\frac{2}{\pi}}\sigma$, and that the expected distortion for 1 bit quantization is $\frac{\pi-2}{\pi}\sigma^2$. Compare this distortion with the rate distortion bound $D = \sigma^2 2^{-2R}$ for R = 1.

Problem 2. Bottleneck Channel

Suppose a signal $X \in \mathcal{X} = 1, 2, \dots, m$ goes through an intervening transition $X \to V \to Y$:

where $x = \{1, 2, ..., m\}, y = \{1, 2, ..., m\}$, and $v = \{1, 2, ..., k\}$. Here p(v|x) and p(y|v) are arbitrary and the channel has transition probability $p(y|x) = \sum_{v} p(v|x)p(y|v)$. Show that $C \leq \log k$

Problem 3. Erasure Channel

Let $\{\mathcal{X}, p(y|x), \mathcal{Y}\}$ be a discrete memoryless channel with capacity C. Suppose this channel is immediately cascaded with an erasure channel $\{\mathcal{Y}, p(s|y), \mathcal{S}\}$ that erases an α number of symbols.

Specifically, $\mathcal{S} = \{y_1, \ldots, y_m, e\}$ and

$$P(S = y | X = x) = (1 - \alpha)p(y|x), \quad y \in \mathcal{Y}$$

$$P(S = e | X = x) = \alpha.$$

Determine the capacity of this channel.

Problem 4. Multiplier Channel

- a) Consider the channel Y = XZ where X and Z are independent binary random variables that take on values 0 and 1. Z is a Bernoulli(α), i.e. $P(Z = 1) = \alpha$. Find the capacity of this channel and the maximizing distribution on X.
- b) Now suppose the receiver can observe Z as well as Y. What is the capacity?

Problem 5. A channel with two independent looks at Y

Let Y_1 and Y_2 be conditionally indeopendent and conditionally identically distributed given X.

- a) Show that $I(X; Y_1, Y_2) = 2I(X; Y_1) I(Y_1; Y_2)$.
- b) Conclude that the capacity of the channel

$$X \rightarrow$$
 Channel $\rightarrow (Y_1, Y_2)$

is less than twice the capacity of the channel

$$X \to | \text{Channel} | \to Y_1.$$

Problem 6. Bounds on the rate distortion function for squared error distortion.

For the case of a continuous random variable X with mean zero and variance σ^2 and squared error distortion, show that

a) $h(X) - \frac{1}{2}\log(2\pi eD) \le R(D),$

b)
$$R(D) \leq \frac{1}{2} \log \frac{\sigma^2}{D}$$
.