

Prof. Dr. Rudolf Mathar, Dr.-Ing. Gholamreza Alirezaei, Emilio Balda, Vimal Radhakrishnan

> Tutorial 1 - Proposed Solution -

> > Monday, October 29, 2018

Solution of Problem 1

Entropy of a random experiment/event can be written as $H(\mathbf{p}) = -\sum$ $\sum_{i} p_i \log p_i$, where p_i is the probability of the *i*-th outcome.

a)

$$
H(\mathbf{p}) = -0.9 * \log_2(0.9) - 0.05 * \log_2(0.05) - 0.05 * \log_2(0.05)
$$

= 0.568 bits.

b)

$$
H(\mathbf{p}) = -0.4 * \log_2(0.4) - 0.3 * \log_2(0.3) - 0.3 * \log_2(0.3)
$$

= 1.570 bits.

Here, you can observe the second experiment is more uncertain (random) compared to the first experiment.

Solution of Problem 2

We wish to find all probability vectors $\mathbf{p} = (p_1, p_2, \dots, p_n)$ which minimize

$$
H(\mathbf{p}) = -\sum_{i} p_i \log p_i
$$

Now $-p_i \log p_i \geq 0$, with equality if and only if $p_i = 0$ or 1. Hence the only possible probability vectors which minimize $H(\mathbf{p})$ are those with $p_i = 1$ for some *i* and $p_j = 0$, $j \neq i$. There are n such vectors, i.e., $(1, 0, ..., 0)$..., $(0, ..., 0, 1)$, and the minimum value of $H(\mathbf{p})$ is 0.

Solution of Problem 3

From basic probability theory, we know

$$
P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j).
$$

and

$$
P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{P(X = x_i, Y = y_j)}{\sum_{i} P(X = x_i, Y = y_j)}.
$$

a)

$$
H(X) = -\sum_{i} P(X = x_i) \log P(X = x_i)
$$

= $-\sum_{i} \left(\sum_{j} P(X = x_i, Y = y_j) \log \sum_{j} P(X = x_i, Y = y_j) \right)$
= $-\frac{2}{3} \log \frac{2}{3} - \frac{1}{3} \log \frac{1}{3} = 0.918$ bits.

Similarly,

$$
H(Y) = -\sum_{j} P(Y = y_j) \log P(Y = y_j)
$$

= $-\frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3} = 0.918$ bits.

b)

$$
H(X|Y) = -\sum_{i,j} P(X = x_i, Y = y_j) \log P(X = x_i | Y = y_j)
$$

= $-\frac{1}{3} \log 1 - 0 \log 0 - \frac{1}{3} \log \frac{1}{2} - \frac{1}{3} \log \frac{1}{2}$
= 0.667 bits.

Similarly,

$$
H(Y|X) = -\sum_{i,j} P(X = x_i, Y = y_j) \log P(Y = y_j | X = x_i) = 0.667
$$
 bits.

c)

$$
H(X,Y) = -\sum_{i,j} P(x_i, y_j) \log P(x_i, y_j) = 3 \times -\frac{1}{3} \log \frac{1}{3} = 1.585 \text{ bits}
$$

d)

$$
H(Y) - H(Y|X) = 0.251
$$
 bits.

Solution of Problem 4

Entropy of function of random variable.

- **a)** $H(X, g(X)) = H(X) + H(g(X)|X)$ by the chain rule for entropies.
- **b)** $H(g(X)|X) = 0$ since for any particular value of X, $g(X)$ is fixed, and hence $H(g(X)|X) = \sum_{x} p(x)H(g(X)|X = x) = \sum_{x} 0 = 0.$
- **c)** $H(X, g(X)) = H(g(X)) + H(X|g(X))$ again by the chain rule.
- **d)** $H(X|g(X)) \geq 0$, with equality if and only if X is a function of $g(X)$, i.e., $g(.)$ is one-to-one. Hence $H(X, q(X)) > H(q(X))$

Combining parts (b) and (d), we obtain $H(X) \geq H(q(X))$.

Solution of Problem 5

Let $y = g(x)$. Then

$$
p(y) = \sum_{x:y=g(x)} p(x).
$$

Consider any set of *x*'s that map onto a single *y*. For this set

$$
\sum_{x:y=g(x)} p(x) \log p(x) \le \sum_{x:y=g(x)} p(x) \log p(y) = p(y) \log p(y),
$$

since log is a monotone increasing function and $p(x) \leq \sum$ $x:y=g(x)$ $p(x) = p(y)$, extending this argument to the entire range of *X* (and *Y*), we obtain

$$
H(X) = -\sum_{x} p(x) \log p(x)
$$

=
$$
-\sum_{y} \sum_{x:y=g(x)} p(x) \log p(x)
$$

$$
\geq -\sum_{y} p(y) \log p(y)
$$

=
$$
H(Y),
$$

with equality if and only if *q* is one-to-one with probability one.

- **a)** $Y = 2^X$ is one-to-one and hence the entropy, which is just a function of the probabilities (and not the values of a random variable) does not change, i.e., $H(X) = H(Y)$.
- **b)** $Y = cos(X)$ is not necessarily one to one. Hence all that we can say is that $H(X)$ *H*(*Y*), with equality if cosine is one-to-one on the range of *X*.

Solution of Problem 6

The number *X* of tosses till the first head appears has the geometric distribution with parameters $p = 1/2$, where $P(X = n) = pq^{n-1}, n \in \{1, 2, ...\}, q = 1 - p$. Hence the entropy of *X* is

$$
H(X) = -\sum_{n=1}^{\infty} pq^{n-1} \log(pq^{n-1})
$$

= $-\sum_{n=1}^{\infty} pq^{(n-1)} \log p - \sum_{n=1}^{\infty} (n-1)pq^{(n-1)} \log q$
= $-\left[\sum_{n=0}^{\infty} pq^n \log p + \sum_{n=0}^{\infty} npq^n \log q\right]$
= $\frac{-p \log p}{1-q} - \frac{pq \log q}{p^2}$
= $\frac{-p \log p - q \log q}{p}$
= $H(p)/p$ bits

if $p = 1/2$, then $H(X) = 2$ bits.