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Solution of Problem 1
p = (p1, p2) be the stationary distribution for a two state homogeneous Markov chain with

states {0, 1} and transition matrix Π =
(

1− α 1− β
β α

)
.

We know, for a stationary distribution pΠ = p. We also Know p1 + p2 = 1 i.e., p1 = 1− p2.

(p1, p2)Π = (p1, p2)

(p1, p2)
(

1− α 1− β
β α

)
= (p1, p2)

(1)

.
We get

(1− α)p1 + βp2 = p1

(1− β)p1 + αp2 = p2
(2)

. substituting p1 = 1− p2 in one of the above equations, we get

(1− α)p1 + β(1− p1) = p1

p1 = β

α + β

(3)

and
p2 = 1− p1

p2 = α

α + β

(4)

Hence the stationary distribution p = ( β
α+β ,

α
α+β ).

Solution of Problem 2
Let X0, X1, X2, ...Xn are drawn i.i.d ∼ p(x), x ∈ X = {1, 2, 3...,m}, and the waiting time to
the next occurrence of X0 has a geometric distribution with probability of success p(x0).

a) Given X0 = i. P (Xn = i) = (1− p(i))n−1p(i).



E[N |X0 = i] =
∞∑
n=1

n(1− p(i))n−1p(i)

=
∞∑
n̄=0

(n̄+ 1)(1− p(i))n̄p(i) (when n̄ = n− 1)

= p(i)
∞∑
n̄=0

(n̄)(1− p(i))n̄ + p(i)
∞∑
n̄=0

(1− p(i))n̄

(5)

Using the given hint, For 0 < r < 1 we have
∞∑
n=0

rn = 1
1− r ,

∞∑
n=0

nrn = r

(1− r)2 .

we can write
E[N |X0 = i] = p(i)(1− p(i))

(p(i))2 + p(i) 1
p(i)

= (1− p(i))
p(i) + 1 = 1

p(i) .
(6)

Therefore,

EN = E[E[N |X0 = i]] =
m∑
i=1
P (X0 = i)E[N |X0 = i] =

m∑
i=1
p(i) 1

p(i) = m. (7)

b) From (a), we know, E[N |X0 = i] = 1
p(i) .

E logN =
m∑
i=1
P (X0 = i)E[logN |X0 = i]

≤
m∑
i=1
P (X0 = i) logE[N |X0 = i] ( Jensen’s Inequality)

=
m∑
i=1
p(i) log 1

p(i)
= H(X).

(8)

Hence, we get E logN ≤ H(X).

Solution of Problem 3

a) By the chain rule, we can write

H(X1, X2, ...., Xn) =
n∑
i=0
H(Xi|Xi−1, ...., X0)

= H(X0) +H(X1|X0) +
n∑
i=2
H(Xi|Xi−1, Xi−2)

(9)

Since for i > 1, the next position depends only on the previous two .i.e., the dog’s walk
is 2nd order Markov, if the dog’s position is the state.
Since X0 = 0 deterministically, H(X0) = 0.



For the first step, it is equally likely to be positive or negative, H(X1|X0) = −1
2 log 1

2 −
1
2 log 1

2 = 1.
Furthermore, for i > 1,

H(Xi|Xi−1, Xi−2) = H(0.1, 0.9). (10)

So,
H(X1, X2, ...., Xn) = 1 + (n− 1)H(0.1, 0.9). (11)

b) The entropy rate of the dog:

1
n+ 1H(X0, X1, ...., Xn) = 1 + (n− 1)H(0.1, 0.9)

n+ 1 →
n→∞

H(0.1, 0.9) (12)

c) The dog must take at least one step to establish the direction of travel from which it
ultimately reverses. Letting S be the number of steps taken between reversals, we have

E(S) =
∞∑
s=1
s(0.9)s−1(0.1)

= 10.
(13)

Starting at time 0, the expected number of steps to the first reversal is 11.

Solution of Problem 4
Given:
Xi be i.i.d ∼ p(x), x ∈ X = {1, 2, 3...,m}.
µ = EX and H = −∑ p(x) log p(x).
The typical set Anε = {(x1, x2, ..., xn) ∈ X n : | − 1

n
log p(x1, x2, ..., xn)−H| ≤ ε}.

Bn
ε = {(x1, x2, ..., xn) ∈ X n : | 1

n

∑n
i=1 xi − µ| ≤ ε}.

a) Yes, By the definition of AEP for discrete random variables, the probability (X1, X2, ..., Xn)
belongs to a typical set goes to 1 as n→∞

b) Yes, by the strong law of large numbers P ((X1, X2, ..., Xn) ∈ Bn
ε )→ 1.

For any ε > 0, there exists N1 such that P ((X1, X2, ..., Xn) ∈ Anε ) > 1− ε
2 for all n > N1.

Similarly, we can say that there exists N2 such that P ((X1, X2, ..., Xn) ∈ Bn
ε ) > 1− ε

2
for all n > N2.
So for all n > max(N1, N2):

P ((X1, X2, ..., Xn) ∈ Anε ∩Bn
ε ) =P ((X1, X2, ..., Xn) ∈ Anε ) + P ((X1, X2, ..., Xn) ∈ Bn

ε )
− P ((X1, X2, ..., Xn) ∈ Anε ∪Bn

ε )

> 1− ε

2 + 1− ε

2 − 1

= 1− ε.
(14)

So for any ε > 0, there exists N = max(N1, N2) such that P ((X1, X2, ..., Xn) ∈ Anε ∩
Bn
ε ) > 1− ε for all n > N , therefore P ((X1, X2, ..., Xn) ∈ Anε ∩Bn

ε )→ 1.



c) By the law of total probability, we get ∑
(x1,x2,..,xn)∈Anε ∩Bnε

p(x1, x2, .., xn) ≤ 1.

For (x1, x2, .., xn) ∈ Anε , from Theorem 2.4.4, we get p(x1, x2, .., xn) ≥ 2−n(H+ε).
Using these two equations, we can write

1 ≥
∑

(x1,x2,..,xn)∈Anε ∩Bnε

p(x1, x2, .., xn) ≥
∑

(x1,x2,..,xn)∈Anε ∩Bnε

2−n(H+ε) = |Anε ∩Bn
ε |2−n(H+ε).

(15)
Multiplying through 2n(H+ε), we get |Anε ∩Bn

ε | ≤ 2n(H+ε).

d) From (b), we know P ((X1, X2, ..., Xn) ∈ Anε ∩ Bn
ε ) → 1, there exists N such that

P ((X1, X2, ..., Xn) ∈ Anε ∩Bn
ε ) ≥ 1

2 for all n > N .
For (x1, x2, .., xn) ∈ Anε , from Theorem 2.4.4, we get p(x1, x2, .., xn) ≤ 2−n(H−ε).
Using these two equations, we can write

1
2 ≤

∑
(x1,x2,..,xn)∈Anε ∩Bnε

p(x1, x2, .., xn) ≤
∑

(x1,x2,..,xn)∈Anε ∩Bnε

2−n(H−ε) = |Anε ∩Bn
ε |2−n(H−ε).

(16)
Multiplying through 2n(H−ε), we get |Anε ∩Bn

ε | ≥ (1
2)2n(H−ε) for sufficiently large n.

Solution of Problem 5

1
n

log p(X1, X2, ..., Xn)p(Y1, Y2, ..., Yn)
p(X1, X2, ..., Xn, Y1, Y2, ..., Yn) = 1

n
log

n

Π
i=1

p(Xi)p(Yi)
p(Xi, Yi)

= 1
n

n∑
i=1

log p(Xi)p(Yi)
p(Xi, Yi)

n→∞→ E log p(Xi)p(Yi)
p(Xi, Yi)

= −I(X;Y )

(17)

Hence, we get p(X1,X2,...,Xn)p(Y1,Y2,...,Yn)
p(X1,X2,...,Xn,Y1,Y2,...,Yn) = 2−nI(X;Y ), which will converge to 1 if X and Y are

independent.


