Information Theory Chapter3: Source Coding

Rudolf Mathar

WS 2018/19

Outline Chapter 2: Source Coding

Variable Length Encoding

Prefix Codes

Kraft-McMillan Theorem

Average Code Word Length

Noiseless Coding Theorem

Huffman Coding

Block Codes for Stationary Sources

Arithmetic Coding

Communication Channel

from an information theoretic point of view

Variable Length Encoding

Given some source alphabet $\mathcal{X} = \{x_1, \dots, x_m\}$, code alphabet $\mathcal{Y} = \{y_1, \dots, y_d\}$.

Aim:

For each character x_1, \ldots, x_m find a code word formed over \mathcal{Y} .

Formally: Map each character $x_i \in \mathcal{X}$ uniquely onto a "word" over \mathcal{Y} .

Definition 3.1.

An injective mapping

$$g: \mathcal{X} \rightarrow \bigcup_{\ell=0}^{\infty} \mathcal{Y}^{\ell}: x_i \mapsto g(x_i) = (w_{i1}, \dots, w_{in_i})$$

is called *encoding*. $g(x_i) = (w_{i1}, \ldots, w_{in_i})$ is called *code word* of character x_i , n_i is called *length* of code word *i*.

Variable Length Encoding

Example:

	g_1	g ₂	g 3	g 4
а	1	1	0	0
b	0	10	10	01
с	1	100	110	10
d	00	1000	111	11
	no encoding	encoding,	encoding,	encoding,
		words are separable	shorter,	even shorter,
			words separable	not separable

Hence, separability of concatenated words over ${\mathcal Y}$ is important.

Variable Length Encoding

Definition 3.2.

An encoding g is called *uniquely decodable (u.d.)* or *uniquely decipherable*, if the mapping

$$G: igcup_{\ell=0}^{\infty} \mathcal{X}^\ell
ightarrow igcup_{\ell=0}^{\infty} \mathcal{Y}^\ell: ig(a_1,\ldots,a_k) \mapsto (g(a_1),\ldots,g(a_k)ig)$$

is injectiv.

Example:

Use the previous encoding g_3

	g ₃	111100011011100010
а	0	1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
b	10	1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
с	110	1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
d	111	dbaacdaaab

 $(g_3 \text{ is a so called prefix code})$

Prefix Codes

Definition 3.3.

A code is called *prefix code*, if no complete code word is prefix of some other code word, i.e., no code word evolves from continuing some other.

Formally: $a \in \mathcal{Y}^k$ is called prefix of $b \in \mathcal{Y}^l$, $k \leq l$, if there is some $c \in \mathcal{Y}^{l-k}$ such that b = (a, c).

Theorem 3.4.

Prefix codes are uniquely decodable.

More properties:

- Prefix codes are easy to construct based on the code word lengths.
- Decoding of prefix codes is fast and requires no memory storage.

Next aim: characterize uniquely decodable codes by their code word lengths.

Kraft-McMillan Theorem

Theorem 3.5. (a) McMillan (1959), b) Kraft (1949))

a) All uniquely decodable codes with code word lengths n_1, \ldots, n_m satisfy

b) Conversely, if $n_1, \ldots, n_m \in \mathbb{N}$ are such that $\sum_{j=1}^m d^{-n_j} \leq 1$, then there exists a u.d. code (even a prefix code) with code word lengths n_1, \ldots, n_m .

Example:

	g 3	g_4
а	0	0
b	10	01
с	110	10
d	111	11
	u.d.	not u.d.

For g_3 : $2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1$ For g_4 : $2^{-1} + 2^{-2} + 2^{-2} + 2^{-2} = 5/4 > 1$

 g_4 is not u.d., there is no u.d. code with code word lengths 1,2,2,2.

Kraft-McMillan Theorem, Proof of b)

Assume $n_1 = n_2 = 2$, $n_3 = n_4 = n_5 = 3$, $n_6 = 4$. Then $\sum i = 1^6 = 15/16 < 1$

Construct a prefix code by a binary code tree as follows.

The corresponding code is given as

Average Code Word Length

Given a code $g(x_1), \ldots, g(x_m)$ with code word lengths n_1, \ldots, n_m . Question: What is a reasonable measure of the "length of a code"?

Definition 3.6.

The *expected code word length* is defined as

$$\bar{n} = \bar{n}(g) = \sum_{j=1}^{m} n_j p_j = \sum_{j=1}^{m} n_j P(X = x_j)$$

Example:

	pi	g 2	g 3
а	1/2	1	0
b	1/4	10	10
С	1/8	100	110
d	1/8	1000	111
$\bar{n}(g)$		15/8	14/8
H(X)	14/8		

Noiseless Coding Theorem, Shannon (1949)

Theorem 3.7.

Let random variable X describe a source with distribution $P(X = x_i) = p_i, i = 1, ..., m$. Let the code alphabet $\mathcal{Y} = \{y_1, ..., y_d\}$ have size d.

a) Each u.d. code g with code word lengths n_1, \ldots, n_m satisfies

 $\bar{n}(g) \geq H(X)/\log d.$

b) Conversely, there is a prefix code, hence a u.d. code g with

 $\bar{n}(g) \leq H(X)/\log d + 1.$

Proof of a)

For any u.d. code it holds by McMillan's Theorem that

$$\begin{aligned} \frac{\mathcal{H}(X)}{\log d} - \bar{n}(g) &= \frac{1}{\log d} \sum_{j=1}^{m} p_j \log \frac{1}{p_j} - \sum_{j=1}^{m} p_j n_j \\ &= \frac{1}{\log d} \sum_{j=1}^{m} p_j \log \frac{1}{p_j} + \sum_{j=1}^{m} p_j \frac{\log d^{-n_j}}{\log d} \\ &= \frac{1}{\log d} \sum_{j=1}^{m} p_j \log \frac{d^{-n_j}}{p_j} \\ &= \frac{\log e}{\log d} \sum_{j=1}^{m} p_j \ln \frac{d^{-n_j}}{p_j} \\ &\leq \frac{\log e}{\log d} \sum_{j=1}^{m} p_j \left(\frac{d^{-n_j}}{p_j} - 1 \right) \\ &\leq \frac{\log e}{\log d} \sum_{j=1}^{m} \left(d^{-n_j} - p_j \right) \leq 0 \end{aligned}$$

Proof of b) Shannon-Fano Coding

W.l.o.g. assume that $p_j > 0$ for all j.

Choose integers n_j such that $d^{-n_j} \leq p_j < d^{-n_j+1}$ for all j. Then

$$\sum_{j=1}^m d^{-n_j} \leq \sum_{j=1}^m p_j \leq 1$$

such that by Kraft's Theorem a u.d. code g exists. Furthermore,

$$\log p_j < (-n_j+1)\log d$$

holds by construction. Hence

$$\sum_{j=1}^m p_j \log p_j < (\log d) \sum_{j=1}^m p_j (-n_j + 1),$$

equivalently,

$$H(X) > (\log d) (\overline{n}(g) - 1).$$

Compact Codes

Is there always a u.d. code g with

$$\bar{n}(g) = H(X)/\log d?$$

No! Check the previous proof. Equality holds if and only if $p_j = 2^{-n_j}$ for all j = 1, ..., m.

Example. Consider binary codes, i.e., d = 2. $\mathcal{X} = \{a, b\}$, $p_1 = 0.6$, $p_2 = 0.4$. The shortest possible code is g(a) = (0), g(b) = (1).

$$H(X) = -0.6 \log_2 0.6 - 0.4 \log_2 0.4 = 0.97095$$

 $\bar{n}(g) = 1.$

Definition 3.8.

Any code of shortest possible average code word length is called *compact*.

How to construct compact codes?

Huffman Coding

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19

Huffman Coding

A compact code g^* is given by:

Character:	а	b	с	d	е	f	g	h
Code word:	01111	01110	0110	111	110	010	10	00

It holds (log to the base 2):

 $\bar{n}(g^*) = 5 \cdot 0.05 + \dots + 2 \cdot 0.3 = 2.75$ $H(X) = -0.05 \cdot \log_2 0.05 - \dots - 0.3 \cdot \log_2 0.3 = 2.7087$

Block Codes for Stationary Sources

Encode blocks/words of length N by words over the code alphabet \mathcal{Y} . Assume that blocks are generated by a stationary source, a stationary sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$. Notation for a block code:

$$g^{(N)}:\mathcal{X}^N o igcup_{\ell=0}^\infty\mathcal{Y}^\ell$$

Block codes are "normal" variabel length codes over the extended alphabet \mathcal{X}^N .

A fair measure of the "length" of a block code is the average code word length per character

$$\bar{n}(g^{(N)})/N.$$

The lower Shannon bound, namely the entropy of the source, is asymptotically $(N \to \infty)$ attained by suitable block codes, as is shown in the following.

Noiseless Coding Theorem for Block Codes

Theorem 3.9.

Let $X = \{X_n\}_{n \in \mathbb{N}}$ be a stationary source. Let the code alphabet $\mathcal{Y} = \{y_1, \dots, y_d\}$ have size d.

a) Each u.d. block code $g^{(N)}$ satisfies

$$\frac{\bar{n}(g^{(N)})}{N} \geq \frac{H(X_1, \dots, X_N)}{N \log d}$$

b) Conversely, there is a prefix block code, hence a u.d. block code $g^{(N)}$ with

$$\frac{\bar{n}(g^{(N)})}{N} \leq \frac{H(X_1,\ldots,X_N)}{N\,\log d} + \frac{1}{N}.$$

Hence, in the limit as $N \to \infty$: There is a sequence of u.d. block codes $g^{(N)}$ such that

$$\lim_{N\to\infty}\frac{\bar{n}(g^{(N)})}{N}=\frac{H_{\infty}(X)}{\log d}$$

Huffman Block Coding

In principle, Huffman encoding can be applied to block codes. However, problems include

- The size of the Huffman table is m^N, thus growing exponentially with the block length.
- ▶ The code table needs to be transmitted to the receiver.
- The source statistics are assumed to be stationary. No adaptivity to to changing probabilities.
- Encoding and decoding only per block. Delays occur at the beginning and end. Padding may be necessary.

"Arithmetic coding" avoids these shortcomings.

Assume that

- Message (x_{i1},...,x_{iN}), x_{ij} ∈ X, j = 1,..., N is generated by some source {X_n}_{n∈ℕ}.
- All (conditional) probabilities

$$P(X_n = x_{i_n} \mid X_1 = x_{i_1}, \dots, X_{n-1} = x_{i_{n-1}}) = p(i_n \mid i_1, \dots, i_{n-1}),$$

 $x_{i_1}, \ldots, x_{i_n} \in \mathcal{X}$, $n = 1, \ldots, N$, are known to the encoder and decoder, or can be estimated.

Then,

$$P(X_1 = x_{i_1}, \ldots, X_n = x_{i_n}) = p(i_1, \ldots, i_n)$$

can be easily computed as

$$p(i_1,...,i_n) = p(i_n \mid i_1,...,i_{n-1}) \cdot p(i_1,...,i_{n-1})$$

Iteratively construct intervals

Initialization, n = 1: (c(1) = 0, c(m + 1) = 1)

$$I(j) = [c(j), c(j+1)), \quad c(j) = \sum_{i=1}^{j-1} p(i), \ j = 1, \dots, m$$

(cumulative probabilities)

IRA'A'I

Recursion over $n = 2, \ldots, N$:

$$I(i_{1},...,i_{n}) = \left[c(i_{1},...,i_{n-1}) + \sum_{i=1}^{i_{n}-1} p(i_{n} \mid i_{1},...,i_{n-1}) \cdot p(i_{1},...,i_{n-1})\right) \\ c(i_{1},...,i_{n-1}) + \sum_{i=1}^{i_{n}} p(i_{n} \mid i_{1},...,i_{n-1}) \cdot p(i_{1},...,i_{n-1})\right)$$

Program code available from Togneri, deSilva, p. 151, 152

Example.

Encode message $(x_{i_1}, \ldots, x_{i_N})$ by the binary representation of some binary number in the interval $I(i_1, \ldots, i_n)$.

A scheme which usually works quite well is as follows.

Let $l = l(i_1, \ldots, i_n)$ and $r = r(i_1, \ldots, i_n)$ denote the left and right bound of the corresponding interval. Carry out the binary expansion of l and runtil until they differ. Since l < r, at the first place they differ there will be a 0 in the expansion of l and a 1 in the expansion of r. The number $0.a_1a_2...a_{t-1}1$ falls within the interval and requires the least number of bits.

$$(a_1a_2\ldots a_{t-1}1)$$
 is the encoding of (x_{i_1},\ldots,x_{i_N}) .

The probability of occurrence of message $(x_{i_1}, \ldots, x_{i_N})$ is equal to the length of the representing interval. Approximately

$$-\log_2 p(i_1,\ldots,i_n)$$

bits are needed to represent the interval, which is close to optimal.

Example. Assume a memoryless source with 4 characters and probabilities

$$\begin{array}{c|ccccc} x_i & a & b & c & d \\ \hline P(X_n = x_i) & 0.3 & 0.4 & 0.1 & 0.2 \end{array}$$

Encode the word (bad):

а	b	с	d	
0.3	0.4	Q.1	0.2	
- ba	bb	bc	bd	
0.12	0.16	0.04	0.08	
baa	bab	bac	bād -	
0.036	0.048	0.012	0.024	
		0.3	96 0.42	2

$$(bad) = [0.396, 0.42)$$

 $0.396 = 0.01100...$ $0.420 = 0.01101...$
 $(bad) = (01101)$

