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Variable Length Encoding

Given some
source alphabet X = {x1, . . . , xm},
code alphabet Y = {y1, . . . , yd}.

Aim:
For each character x1, . . . , xm find a code word formed over Y.

Formally:
Map each character xi ∈ X uniquely onto a “word” over Y.

Definition 3.1.
An injective mapping

g : X →
∞⋃
`=0

Y` : xi 7→ g(xi ) = (wi1, . . . ,wini )

is called encoding. g(xi ) = (wi1, . . . ,wini ) is called code word of
character xi , ni is called length of code word i .
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Variable Length Encoding

Example:

g1 g2 g3 g4
a 1 1 0 0
b 0 10 10 01
c 1 100 110 10
d 00 1000 111 11

no encoding encoding, encoding, encoding,
words are separable shorter, even shorter,

words separable not separable

Hence, separability of concatenated words over Y is important.
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Variable Length Encoding

Definition 3.2.
An encoding g is called uniquely decodable (u.d.) or uniquely
decipherable, if the mapping

G :
∞⋃
`=0

X ` →
∞⋃
`=0

Y` :
(
a1, . . . , ak) 7→ (g(a1), . . . , g(ak)

)
is injectiv.

Example:
Use the previous encoding g3

g3
a 0
b 10
c 110
d 111

1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
1 1 1|1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
1 1 1|1 0 |0 0 1 1 0 1 1 1 0 0 0 1 0
1 1 1|1 0 |0|0 |1 1 0|1 1 1|0| 0|0|1 0
d b a a c d a a a b

(g3 is a so called prefix code)
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Prefix Codes

Definition 3.3.
A code is called prefix code, if no complete code word is prefix of some
other code word, i.e., no code word evolves from continuing some other.

Formally:
a ∈ Yk is called prefix of b ∈ Y l , k ≤ l , if there is some c ∈ Y l−k such
that b = (a, c).

Theorem 3.4.
Prefix codes are uniquely decodable.

More properties:

I Prefix codes are easy to construct based on the code word lengths.

I Decoding of prefix codes is fast and requires no memory storage.

Next aim: characterize uniquely decodable codes by their code word
lengths.
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Kraft-McMillan Theorem
Theorem 3.5.

(
a) McMillan (1959), b) Kraft (1949)

)
a) All uniquely decodable codes with code word lengths n1, . . . , nm

satisfy
m∑
j=1

d−nj ≤ 1

b) Conversely, if n1, . . . , nm ∈ N are such that
∑m

j=1 d
−nj ≤ 1, then

there exists a u.d. code (even a prefix code) with code word lengths
n1, . . . , nm.

Example:

g3 g4
a 0 0
b 10 01
c 110 10
d 111 11

u.d. not u.d.

For g3: 2
−1 + 2−2 + 2−3 + 2−3 = 1

For g4:

2−1 + 2−2 + 2−2 + 2−2 = 5/4 > 1

g4 is not u.d., there is no u.d. code with code

word lengths 1,2,2,2.
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Kraft-McMillan Theorem, Proof of b)
Assume n1 = n2 = 2, n3 = n4 = n5 = 3, n6 = 4.
Then

∑
i = 16 = 15/16 < 1

Construct a prefix code by a binary code tree as follows.ffffffffffffffvf��XXf
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The corresponding code is given as

xi x1 x2 x3 x4 x5 x6
g(xi ) 11 10 011 010 001 0001
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Average Code Word Length
Given a code g(x1), . . . , g(xm) with code word lengths n1, . . . , nm.
Question: What is a reasonable measure of the “length of a code”?

Definition 3.6.
The expected code word length is defined as

n̄ = n̄(g) =
m∑
j=1

njpj =
m∑
j=1

njP(X = xj)

Example:

pi g2 g3
a 1/2 1 0
b 1/4 10 10
c 1/8 100 110
d 1/8 1000 111

n̄(g) 15/8 14/8
H(X ) 14/8
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Noiseless Coding Theorem, Shannon (1949)

Theorem 3.7.
Let random variable X describe a source with distribution
P(X = xi ) = pi , i = 1, . . . ,m. Let the code alphabet Y = {y1, . . . , yd}
have size d .

a) Each u.d. code g with code word lengths n1, . . . , nm satisfies

n̄(g) ≥ H(X )/ log d .

b) Conversely, there is a prefix code, hence a u.d. code g with

n̄(g) ≤ H(X )/ log d + 1.
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Proof of a)
For any u.d. code it holds by McMillan’s Theorem that

H(X )

log d
− n̄(g) =

1

log d

m∑
j=1

pj log
1

pj
−

m∑
j=1

pjnj

=
1

log d

m∑
j=1

pj log
1

pj
+

m∑
j=1

pj
log d−nj

log d

=
1

log d

m∑
j=1

pj log
d−nj

pj

=
log e

log d

m∑
j=1

pj ln
d−nj

pj

≤ log e

log d

m∑
j=1

pj
(d−nj

pj
− 1
)

≤ log e

log d

m∑
j=1

(
d−nj − pj

)
≤ 0
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Proof of b) Shannon-Fano Coding

W.l.o.g. assume that pj > 0 for all j .

Choose integers nj such that d−nj ≤ pj < d−nj+1 for all j .
Then

m∑
j=1

d−nj ≤
m∑
j=1

pj ≤ 1

such that by Kraft’s Theorem a u.d. code g exists. Furthermore,

log pj < (−nj + 1) log d

holds by construction. Hence

m∑
j=1

pj log pj < (log d)
m∑
j=1

pj(−nj + 1),

equivalently,
H(X ) > (log d)

(
n̄(g)− 1

)
.
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Compact Codes
Is there always a u.d. code g with

n̄(g) = H(X )/ log d?

No! Check the previous proof. Equality holds if and only if pj = 2−nj for
all j = 1, . . . ,m.

Example. Consider binary codes, i.e., d = 2. X = {a, b},
p1 = 0.6, p2 = 0.4. The shortest possible code is
g(a) = (0), g(b) = (1).

H(X ) = −0.6 log2 0.6− 0.4 log2 0.4 = 0.97095

n̄(g) = 1.

Definition 3.8.
Any code of shortest possible average code word length is called
compact.

How to construct compact codes?
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Huffman Coding
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Huffman Coding
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A compact code g∗ is given by:

Character: a b c d e f g h

Code word: 01111 01110 0110 111 110 010 10 00

It holds (log to the base 2):

n̄(g∗) = 5 · 0.05 + · · ·+ 2 · 0.3 = 2.75

H(X ) = −0.05 · log2 0.05− · · · − 0.3 · log2 0.3 = 2.7087
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Block Codes for Stationary Sources

Encode blocks/words of length N by words over the code alphabet Y.
Assume that blocks are generated by a stationary source, a stationary
sequence of random variables {Xn}n∈N.
Notation for a block code:

g (N) : XN →
∞⋃
`=0

Y`

Block codes are “normal” variabel length codes over the extended
alphabet XN .

A fair measure of the “length” of a block code is the average code word
length per character

n̄
(
g (N)

)
/N.

The lower Shannon bound, namely the entropy of the source, is asymptotically

(N → ∞) attained by suitable block codes, as is shown in the following.
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Noiseless Coding Theorem for Block Codes

Theorem 3.9.
Let X = {Xn}n∈N be a stationary source. Let the code alphabet
Y = {y1, . . . , yd} have size d .

a) Each u.d. block code g (N) satisfies

n̄(g (N))

N
≥ H(X1, . . . ,XN)

N log d
.

b) Conversely, there is a prefix block code, hence a u.d. block code g (N)

with
n̄(g (N))

N
≤ H(X1, . . . ,XN)

N log d
+

1

N
.

Hence, in the limit as N →∞:
There is a sequence of u.d. block codes g (N) such that

lim
N→∞

n̄(g (N))

N
=

H∞(X)

log d
.
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Huffman Block Coding

In principle, Huffman encoding can be applied to block codes. However,
problems include

I The size of the Huffman table is mN , thus growing exponentially
with the block length.

I The code table needs to be transmitted to the receiver.

I The source statistics are assumed to be stationary. No adaptivity to
to changing probabilities.

I Encoding and decoding only per block. Delays occur at the
beginning and end. Padding may be necessary.

“Arithmetic coding” avoids these shortcomings.
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Arithmetic Coding

Assume that

I Message (xi1 , . . . , xiN ), xij ∈ X , j = 1, . . . ,N is generated by some
source {Xn}n∈N.

I All (conditional) probabilities

P(Xn = xin | X1 = xi1 , . . . ,Xn−1 = xin−1) = p(in | i1, . . . , in−1),

xi1 , . . . , xin ∈ X , n = 1, . . . ,N, are known to the encoder and
decoder, or can be estimated.

Then,
P(X1 = xi1 , . . . ,Xn = xin) = p(i1, . . . , in)

can be easily computed as

p(i1, . . . , in) = p(in | i1, . . . , in−1) · p(i1, . . . , in−1)
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Arithmetic Coding
Iteratively construct intervals

Initialization, n = 1:
(
c(1) = 0, c(m + 1) = 1

)
I (j) =

[
c(j), c(j + 1)

)
, c(j) =

j−1∑
i=1

p(i), j = 1, . . . ,m

(cumulative probabilities)

Recursion over n = 2, . . . ,N:

I (i1, . . . , in)

=
[
c(i1, . . . , in−1) +

in−1∑
i=1

p(in | i1, . . . , in−1) · p(i1, . . . , in−1)
)

c(i1, . . . , in−1) +
in∑
i=1

p(in | i1, . . . , in−1) · p(i1, . . . , in−1)
)

Program code available from Togneri, deSilva, p. 151, 152
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Arithmetic Coding
Example.

c(1) c(3) c(m)c(2)

0 1
p(1) p(2) p(m)

p(1|2)p(2) p(2|2)p(2) p(m|2)p(2)

c(2, 1) c(2, 2) c(2, 3) c(2,m)

p(2|2,m)p(2,m)

c(2,m, 1) c(2,m, 2) c(2,m,m)c(2,m, 3)

p(m|2,m)p(2,m)p(1|2,m)p(2,m)
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Arithmetic Coding

Encode message (xi1 , . . . , xiN ) by the binary representation of some binary
number in the interval I (i1, . . . , in).

A scheme which usually works quite well is as follows.
Let l = l(i1, . . . , in) and r = r(i1, . . . , in) denote the left and right bound
of the corresponding interval. Carry out the binary expansion of l and r
until until they differ. Since l < r , at the first place they differ there will
be a 0 in the expansion of l and a 1 in the expansion of r . The number
0.a1a2 . . . at−11 falls within the interval and requires the least number of
bits.

(a1a2 . . . at−11) is the encoding of (xi1 , . . . , xiN ).

The probability of occurrence of message (xi1 , . . . , xiN ) is equal to the
length of the representing interval. Approximately

− log2 p(i1, . . . , in)

bits are needed to represent the interval, which is close to optimal.
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Arithmetic Coding
Example. Assume a memoryless source with 4 characters and probabilities

xi a b c d
P(Xn = xi ) 0.3 0.4 0.1 0.2

Encode the word (bad):

a b dc

0.3 0.4 0.1 0.2

0.12 0.16 0.08

ba bb bc bd

bac badbabbaa

0.036 0.048 0.024

0.04

0.012

0.396 0.420

(bad) = [0.396, 0.42)

0.396 = 0.01100 . . . 0.420 = 0.01101 . . .

(bad) = (01101)
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