
Information Theory
Chapter3: Source Coding

Rudolf Mathar

WS 2018/19

Outline Chapter 2: Source Coding

Variable Length Encoding

Prefix Codes

Kraft-McMillan Theorem

Average Code Word Length

Noiseless Coding Theorem

Huffman Coding

Block Codes for Stationary Sources

Arithmetic Coding

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 2

Communication Channel
from an information theoretic point of view

noise

estimation

modulator

source

source encoder

channel encoder

destination

source decoder

channel decoder

demodulator

channel

random

channel

analog channel

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 3

Variable Length Encoding

Given some
source alphabet X = {x1, . . . , xm},
code alphabet Y = {y1, . . . , yd}.

Aim:
For each character x1, . . . , xm find a code word formed over Y.

Formally:
Map each character xi ∈ X uniquely onto a “word” over Y.

Definition 3.1.
An injective mapping

g : X →
∞⋃
`=0

Y` : xi 7→ g(xi) = (wi1, . . . ,wini)

is called encoding. g(xi) = (wi1, . . . ,wini) is called code word of
character xi , ni is called length of code word i .

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 4

Variable Length Encoding

Example:

g1 g2 g3 g4
a 1 1 0 0
b 0 10 10 01
c 1 100 110 10
d 00 1000 111 11

no encoding encoding, encoding, encoding,
words are separable shorter, even shorter,

words separable not separable

Hence, separability of concatenated words over Y is important.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 5

Variable Length Encoding

Definition 3.2.
An encoding g is called uniquely decodable (u.d.) or uniquely
decipherable, if the mapping

G :
∞⋃
`=0

X ` →
∞⋃
`=0

Y` :
(
a1, . . . , ak) 7→ (g(a1), . . . , g(ak)

)
is injectiv.

Example:
Use the previous encoding g3

g3
a 0
b 10
c 110
d 111

1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
1 1 1|1 0 0 0 1 1 0 1 1 1 0 0 0 1 0
1 1 1|1 0 |0 0 1 1 0 1 1 1 0 0 0 1 0
1 1 1|1 0 |0|0 |1 1 0|1 1 1|0| 0|0|1 0
d b a a c d a a a b

(g3 is a so called prefix code)

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 6

Prefix Codes

Definition 3.3.
A code is called prefix code, if no complete code word is prefix of some
other code word, i.e., no code word evolves from continuing some other.

Formally:
a ∈ Yk is called prefix of b ∈ Y l , k ≤ l , if there is some c ∈ Y l−k such
that b = (a, c).

Theorem 3.4.
Prefix codes are uniquely decodable.

More properties:

I Prefix codes are easy to construct based on the code word lengths.

I Decoding of prefix codes is fast and requires no memory storage.

Next aim: characterize uniquely decodable codes by their code word
lengths.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 7

Kraft-McMillan Theorem
Theorem 3.5.

(
a) McMillan (1959), b) Kraft (1949)

)
a) All uniquely decodable codes with code word lengths n1, . . . , nm

satisfy
m∑
j=1

d−nj ≤ 1

b) Conversely, if n1, . . . , nm ∈ N are such that
∑m

j=1 d
−nj ≤ 1, then

there exists a u.d. code (even a prefix code) with code word lengths
n1, . . . , nm.

Example:

g3 g4
a 0 0
b 10 01
c 110 10
d 111 11

u.d. not u.d.

For g3: 2
−1 + 2−2 + 2−3 + 2−3 = 1

For g4:

2−1 + 2−2 + 2−2 + 2−2 = 5/4 > 1

g4 is not u.d., there is no u.d. code with code

word lengths 1,2,2,2.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 8

Kraft-McMillan Theorem, Proof of b)
Assume n1 = n2 = 2, n3 = n4 = n5 = 3, n6 = 4.
Then

∑
i = 16 = 15/16 < 1

Construct a prefix code by a binary code tree as follows.ffffffffffffffvf��XXf

��
XXf
��
XXf
��
XXf
��
XXf
��
XXv
��
XXv
��
XXv��

HH
f

��
HH

v
��
HH

v
��
HH

f
#
#

c
c
f

#
#

c
c
f

\
\
\\

�
�
��f

x1

x2

x3

x4

x5

x6

�
��

�
��

��

��

��

0

1 0

1

1

0

1

0

1

0
1

The corresponding code is given as

xi x1 x2 x3 x4 x5 x6
g(xi) 11 10 011 010 001 0001

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 9

Average Code Word Length
Given a code g(x1), . . . , g(xm) with code word lengths n1, . . . , nm.
Question: What is a reasonable measure of the “length of a code”?

Definition 3.6.
The expected code word length is defined as

n̄ = n̄(g) =
m∑
j=1

njpj =
m∑
j=1

njP(X = xj)

Example:

pi g2 g3
a 1/2 1 0
b 1/4 10 10
c 1/8 100 110
d 1/8 1000 111

n̄(g) 15/8 14/8
H(X) 14/8

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 10

Noiseless Coding Theorem, Shannon (1949)

Theorem 3.7.
Let random variable X describe a source with distribution
P(X = xi) = pi , i = 1, . . . ,m. Let the code alphabet Y = {y1, . . . , yd}
have size d .

a) Each u.d. code g with code word lengths n1, . . . , nm satisfies

n̄(g) ≥ H(X)/ log d .

b) Conversely, there is a prefix code, hence a u.d. code g with

n̄(g) ≤ H(X)/ log d + 1.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 11

Proof of a)
For any u.d. code it holds by McMillan’s Theorem that

H(X)

log d
− n̄(g) =

1

log d

m∑
j=1

pj log
1

pj
−

m∑
j=1

pjnj

=
1

log d

m∑
j=1

pj log
1

pj
+

m∑
j=1

pj
log d−nj

log d

=
1

log d

m∑
j=1

pj log
d−nj

pj

=
log e

log d

m∑
j=1

pj ln
d−nj

pj

≤ log e

log d

m∑
j=1

pj
(d−nj

pj
− 1
)

≤ log e

log d

m∑
j=1

(
d−nj − pj

)
≤ 0

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 12

Proof of b) Shannon-Fano Coding

W.l.o.g. assume that pj > 0 for all j .

Choose integers nj such that d−nj ≤ pj < d−nj+1 for all j .
Then

m∑
j=1

d−nj ≤
m∑
j=1

pj ≤ 1

such that by Kraft’s Theorem a u.d. code g exists. Furthermore,

log pj < (−nj + 1) log d

holds by construction. Hence

m∑
j=1

pj log pj < (log d)
m∑
j=1

pj(−nj + 1),

equivalently,
H(X) > (log d)

(
n̄(g)− 1

)
.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 13

Compact Codes
Is there always a u.d. code g with

n̄(g) = H(X)/ log d?

No! Check the previous proof. Equality holds if and only if pj = 2−nj for
all j = 1, . . . ,m.

Example. Consider binary codes, i.e., d = 2. X = {a, b},
p1 = 0.6, p2 = 0.4. The shortest possible code is
g(a) = (0), g(b) = (1).

H(X) = −0.6 log2 0.6− 0.4 log2 0.4 = 0.97095

n̄(g) = 1.

Definition 3.8.
Any code of shortest possible average code word length is called
compact.

How to construct compact codes?

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 14

Huffman Coding

a

b

c

d

e

f

g

h

0.05

0.05

0.05

0.1

0.1

0.15

0.2

0.3

1
1

1

1

1

1
1

0

0

0

0

0

0

0

0.1

0.2

0.15

0.4

0.3

0.6
1.0

01111

01110

0110

111

110

010

10

00

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 16

Huffman Coding

a

b

c

d

e

f

g

h

0.05

0.05

0.05

0.1

0.1

0.15

0.2

0.3

1
1

1

1

1

1
1

0

0

0

0

0

0

0

0.1

0.2

0.15

0.4

0.3

0.6
1.0

01111

01110

0110

111

110

010

10

00

A compact code g∗ is given by:

Character: a b c d e f g h

Code word: 01111 01110 0110 111 110 010 10 00

It holds (log to the base 2):

n̄(g∗) = 5 · 0.05 + · · ·+ 2 · 0.3 = 2.75

H(X) = −0.05 · log2 0.05− · · · − 0.3 · log2 0.3 = 2.7087

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 17

Block Codes for Stationary Sources

Encode blocks/words of length N by words over the code alphabet Y.
Assume that blocks are generated by a stationary source, a stationary
sequence of random variables {Xn}n∈N.
Notation for a block code:

g (N) : XN →
∞⋃
`=0

Y`

Block codes are “normal” variabel length codes over the extended
alphabet XN .

A fair measure of the “length” of a block code is the average code word
length per character

n̄
(
g (N)

)
/N.

The lower Shannon bound, namely the entropy of the source, is asymptotically

(N → ∞) attained by suitable block codes, as is shown in the following.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 18

Noiseless Coding Theorem for Block Codes

Theorem 3.9.
Let X = {Xn}n∈N be a stationary source. Let the code alphabet
Y = {y1, . . . , yd} have size d .

a) Each u.d. block code g (N) satisfies

n̄(g (N))

N
≥ H(X1, . . . ,XN)

N log d
.

b) Conversely, there is a prefix block code, hence a u.d. block code g (N)

with
n̄(g (N))

N
≤ H(X1, . . . ,XN)

N log d
+

1

N
.

Hence, in the limit as N →∞:
There is a sequence of u.d. block codes g (N) such that

lim
N→∞

n̄(g (N))

N
=

H∞(X)

log d
.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 19

Huffman Block Coding

In principle, Huffman encoding can be applied to block codes. However,
problems include

I The size of the Huffman table is mN , thus growing exponentially
with the block length.

I The code table needs to be transmitted to the receiver.

I The source statistics are assumed to be stationary. No adaptivity to
to changing probabilities.

I Encoding and decoding only per block. Delays occur at the
beginning and end. Padding may be necessary.

“Arithmetic coding” avoids these shortcomings.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 20

Arithmetic Coding

Assume that

I Message (xi1 , . . . , xiN), xij ∈ X , j = 1, . . . ,N is generated by some
source {Xn}n∈N.

I All (conditional) probabilities

P(Xn = xin | X1 = xi1 , . . . ,Xn−1 = xin−1) = p(in | i1, . . . , in−1),

xi1 , . . . , xin ∈ X , n = 1, . . . ,N, are known to the encoder and
decoder, or can be estimated.

Then,
P(X1 = xi1 , . . . ,Xn = xin) = p(i1, . . . , in)

can be easily computed as

p(i1, . . . , in) = p(in | i1, . . . , in−1) · p(i1, . . . , in−1)

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 21

Arithmetic Coding
Iteratively construct intervals

Initialization, n = 1:
(
c(1) = 0, c(m + 1) = 1

)
I (j) =

[
c(j), c(j + 1)

)
, c(j) =

j−1∑
i=1

p(i), j = 1, . . . ,m

(cumulative probabilities)

Recursion over n = 2, . . . ,N:

I (i1, . . . , in)

=
[
c(i1, . . . , in−1) +

in−1∑
i=1

p(in | i1, . . . , in−1) · p(i1, . . . , in−1)
)

c(i1, . . . , in−1) +
in∑
i=1

p(in | i1, . . . , in−1) · p(i1, . . . , in−1)
)

Program code available from Togneri, deSilva, p. 151, 152

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 22

Arithmetic Coding
Example.

c(1) c(3) c(m)c(2)

0 1
p(1) p(2) p(m)

p(1|2)p(2) p(2|2)p(2) p(m|2)p(2)

c(2, 1) c(2, 2) c(2, 3) c(2,m)

p(2|2,m)p(2,m)

c(2,m, 1) c(2,m, 2) c(2,m,m)c(2,m, 3)

p(m|2,m)p(2,m)p(1|2,m)p(2,m)

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 23

Arithmetic Coding

Encode message (xi1 , . . . , xiN) by the binary representation of some binary
number in the interval I (i1, . . . , in).

A scheme which usually works quite well is as follows.
Let l = l(i1, . . . , in) and r = r(i1, . . . , in) denote the left and right bound
of the corresponding interval. Carry out the binary expansion of l and r
until until they differ. Since l < r , at the first place they differ there will
be a 0 in the expansion of l and a 1 in the expansion of r . The number
0.a1a2 . . . at−11 falls within the interval and requires the least number of
bits.

(a1a2 . . . at−11) is the encoding of (xi1 , . . . , xiN).

The probability of occurrence of message (xi1 , . . . , xiN) is equal to the
length of the representing interval. Approximately

− log2 p(i1, . . . , in)

bits are needed to represent the interval, which is close to optimal.

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 24

Arithmetic Coding
Example. Assume a memoryless source with 4 characters and probabilities

xi a b c d
P(Xn = xi) 0.3 0.4 0.1 0.2

Encode the word (bad):

a b dc

0.3 0.4 0.1 0.2

0.12 0.16 0.08

ba bb bc bd

bac badbabbaa

0.036 0.048 0.024

0.04

0.012

0.396 0.420

(bad) = [0.396, 0.42)

0.396 = 0.01100 . . . 0.420 = 0.01101 . . .

(bad) = (01101)

Rudolf Mathar, Information Theory, RWTH Aachen, WS 2018/19 25

	Variable Length Encoding
	Prefix Codes
	Kraft-McMillan Theorem
	Average Code Word Length
	Noiseless Coding Theorem
	Huffman Coding
	Block Codes for Stationary Sources
	Arithmetic Coding

