

Homework 9 in Cryptography I

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 30.06.2011

Exercise 27. Let $\varphi: \mathbb{N} \to \mathbb{N}$ the Euler φ -function, i.e., $\varphi(n) = |\mathbb{Z}_n^*|$.

- (a) Determine $\varphi(p)$ for a prime p.
- (b) Determine $\varphi(p^k)$ for a prime p and $k \in \mathbb{N}$.
- (c) Determine $\varphi(p \cdot q)$ for two different primes $p \neq q$.
- (d) Determine $\varphi(4913)$ and $\varphi(899)$.

Exercise 28.

- (a) Use the Miller-Rabin Primality Test to prove that 341 is composite.
- (b) The Miller-Rabin Primality Test comprises a number of successive squarings. Suppose a 300-digit number n is given. How many squarings are needed in worst case during a single run of this primality test?

Exercise 29. Show that 1031 is invertible modulo 2227 and compute the inverse 1031^{-1} in the ring \mathbb{Z}_{2227} .

Exercise 30. Prove the Chinese Remainder Theorem:

Suppose m_1, \ldots, m_r are pairwise relatively prime, $a_1, \ldots, a_r \in \mathbb{N}$. The system of r congruences

$$x \equiv a_i \pmod{m_i}, \qquad i = 1, \dots, r,$$

has a unique solution modulo $M = \prod_{i=1}^{r} m_i$ given by

$$x = \sum_{i=1}^{r} a_i M_i y_i \pmod{M},$$

where $M_i = M/m_i, y_i = M_i^{-1} \, (\text{mod } m_i), i = 1, \dots, r.$

Exercise 31. Solve the following system of linear congruences using the Chinese Remainder Theorem and compute the smallest positive solution:

$$x \equiv 3 \pmod{11}$$

$$x \equiv 5 \pmod{13}$$

$$x \equiv 7 \pmod{15}$$

$$x \equiv 9 \pmod{27}$$
.