Problem 1. (20 points)

We recall that one-time pad (OTP) encryption consists of adding a random key of the
same size as the plain text to a plain text message. This results in a random cipher text.
For a message of size n and an alphabet of cardinality m we have

e(mi,...,my) =ci,...,cn, with ¢; = m; + k;(mod m)
and
d(cr, ..., cn) =ma,...,my with m; = ¢; — ki(mod m).

(a) One of the following two strings has been encrypted using a simple substitution cipher
and the other with OTP. Determine the type of encryption by computing the index
of coincidence and explain your answer. We consider the roman alphabet of size 26
and english language.
s1 = rczbw  Dbthsl  pscpi lhbgz jtgbi bjgly  ijibf  hcqqgf zbyfp
sg = khqwg izmgk poyrk huitd uxlxc wzotw pahfo hmgfe vuejj

In the following we consider a binary alphabet (m = 2). OTP is equivalent to
G=m; Dk;and m;=c; D k;

where @ is the binary XOR operation. {0,1}" denotes the set of all binary strings of
length n. It is known that OTP encryption has perfect secrecy if M = K = {0,1}" and
the key k = ky,...,k, is uniformly distributed. Now we want to consider variations of
OTP with restrictions on the plaintext and the key. In particular, the set S = {00,01, 10}
is considered.

Consider the following three OTP variants where the key is always chosen uniformly at
random:

1. Let M = S™ and K = {0,1}?". In this way, both the message and the key are bit
strings of length 2n, but not every bit string of length 2n can be a valid message.
For example, for n = 3, we could have m = 00,01, 00 but not m = 11,00, 11 because

11¢8.
2. Let M = {0,1}?" and K = S™.
3. Let M=K =25"
For each of these OTP variants answer following questions:

(b) What are the sizes of the message space M and the key space K.
(c) Determine the space C of the ciphertexts.
(d) Has the resulting cipher perfect secrecy? Explain your answer.

)

(e) In which way is the size of the key space and the message space related to the property
of perfect secrecy? Explain how and why.




Problem 2. (20 points)
Alice and Bob want to use the number p = 1373 and the base a = 2 for a Diffie-Hellman
key exchange.

(a) Use the Miller-Rabin test to show that 2 is not a strong witness for the compositness
of p.

(b) Which condition must be fulfiled by a to be feasible for the Diffie-Hellman key ex-
change protocol? Check if a actually fulfils this condition (Hint: 21%¢ = 333(mod 1373)).

Alice sends u = 974 to Bob.
(c) Given that Bob’s secret is 871, compute the shared key.

The Diffie-Hellman key exchange is based on the Diffie-Hellman problem. A variant of
this problem is the Diffie-Hellman Decision problem. It is stated as follows. Given three
numbers u, v and w with

u = a®(mod p) and v = a¥(mod p),
determine wether
w = a®¥(mod p)

(d) Prove that an algorithm that solves the Diffie-Hellman problem can be used to solve
the Diffie-Hellman Decision problem.




Problem 3. (20 points)
Alice uses the RSA algorithm and encrypts a message m with Bob’s public key (n,e) =
(91, 59).

(a) Find the plaintext associated with the ciphertext ¢ = 23. Write down all steps of
your calculations.

Now imagine Alice wants to send the same message x to three different people Bob, Bart
and Barney. Each of them uses the same public encryption exponent e = 3. Let their public
moduli be n1, ng and ng, respectively. Alice thus sends to each of them ¢; = x3(mod n;).

(b) First let us assume that at least two public moduli n; are not relatively prime (for
example ged(ng,n2) # 1). How can you find z given all ¢;’s?

(c) Second, assume that nq = 46, np = 51 and n3g =77 and ¢; = 31, cg = 19 and ¢ = 71.

We have
31 = z3(mod 46)
19 = z3(mod 51)
71 = z3(mod 77)

Compute z, given all ¢;’s (and the public information) without factoring any of the
moduli.

(d) Oscar can only intercept the first two ciphertexts. Is it possible to decrypt the
ciphertext from the first two congruences (without factoring any of the moduli)?

31 = x3(mod 46)
19 = z3(mod 51)




