

Exercise 1 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-10-24

Problem 1. (Euler's criterion) Prove Euler's criterion (Proposition 9.2): Let p > 2 be prime, then

 $c \in \mathbb{Z}_p^*$ is a quadratic residue modulo $p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \mod p$.

Problem 2. (baby-step giant-step algorithm) Consider the following algorithm to compute the discrete logarithm:

Algorithm 1 Baby-step Giant-step Algorithm

Input: p prime, α is a primitive element mod p, $\beta = \alpha^x \mod p$ for an unknown $x \in \{0, \ldots, p-1\}$

Output: $x = \log_{\alpha} \beta$,

- (1) $m \leftarrow \lceil \sqrt{p} \rceil$
- (2) Compute a table of baby-steps $b_j = \alpha^j \mod p$ for all indices $j \in \mathbb{Z}$ with $0 \le j < m$.
- (3) Compute a table of giant-steps $g_i = \beta \alpha^{-im} \mod p$ for indices $i \in \mathbb{Z}$ with $0 \le i < m$, until you find a pair (i, j) such that $b_j = g_i$ holds.

return $x \equiv mi + j \mod p - 1$.

- a) Prove that the given algorithm calculates the discrete logarithm.
- **b)** Why is α a primitive element modulo p?
- c) Compute the discrete log for $\alpha^x \equiv \beta \mod p$ with $\alpha = 3$, $\beta = 13$ and p = 29 using the given algorithm.

Remark: The *ceiling-function* is defined as $[x] = \min\{k \in \mathbb{Z} \mid k \geq x\}$.

Problem 3. (exponential congruences) Let $x, y \in \mathbb{Z}, a \in \mathbb{Z}_n^* \setminus \{1\}$, and $\operatorname{ord}_n(a) = \min\{k \in \{1, \dots, \varphi(n)\} \mid a^k \equiv 1 \mod n\}$. Show that

$$a^x \equiv a^y \mod n \iff x \equiv y \mod \operatorname{ord}_n(a)$$
.