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Solution of Problem 7
p prime, g primitive element modulo p and a, b ∈ Z∗

p.

a) a is a quadratic residue modulo p ⇔ ∃i ∈ N0 : a ≡ g2i mod p

Proof. “⇒”: a is a quadratic residue modulo p, i.e. ∃k ∈ Z∗
p : k2 ≡ a mod p. g is a

primitive element, i.e. ∃l ∈ N0 : k ≡ gl mod p. Then,

k2 ≡ g2l ≡ a mod p .

“⇐”: ∃i ∈ N0 : a ≡ g2i mod p. With a ≡ (gi)2 mod p, a is a quadratic residue
modulo i.

b) If p is odd, then exactly one half of the elements x ∈ Z∗
p are quadratic residues modulo

p.

Proof. p even: |Z∗
2| = 1

p odd:
∣∣∣Z∗

p

∣∣∣ = p− 1 is even.

Z∗
p = 〈g〉 =

{
g0, g1, . . . , gp−2

}
A :=

{
g0, g2, g4, . . . , gp−3

}
, |A| = p− 1

2
x ∈ A, i.e. ∃i ∈ N0 : x ≡ g2i mod p

a)⇒ x is a quadratic residue modulo p

x ∈ Z∗
p \ A and assume x is quadratic residue modulo p

a)⇒ ∃i ∈ N0 : x ≡ g2i mod p

⇒ x ∈ A, a contradiction. (Note: 2i mod (p− 1) is even)

c) a · b is a quadratic residue modulo p⇔

a, b are quadratic residues modulo p

a, b are quadratic nonresidues modulo p



Proof. p = 2: trivial, as
∣∣∣Z∗

p

∣∣∣ = 1.

p > 2: “⇒”: Let a ≡ gk mod p, b ≡ gl mod p. With a · b quadratic residue modulo
p:

∃i ∈ N0 : a · b ≡ g2i mod p

⇒ a · b ≡ gk+l ≡ g2i mod p

⇒ k + l ≡ 2i mod (p− 1)
(Note: p− 1 even ⇒ k + l mod (p− 1) even)

⇒

k, l even a)⇒ a, b are quadratic residues
k, l odd a)⇒ a, b are quadratic nonresidues

“⇐”: a, b are quadratic residues modulo p. Then

a · b ≡ g2k · g2l ≡ g2(k+l) mod p
a)⇒ a · b quadratic residue modulo p .

a, b are quadratic nonresidues modulo p. Then

a · b ≡ g2k+1 · g2l+1 ≡ g2(k+l+1) mod p
a)⇒ a · b quadratic residue modulo p .

Solution of Problem 8

a) Given x ≡ −x mod p, prove that x ≡ 0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

−x ≡ x mod p

⇔ 0 ≡ 2x mod p

⇔ 0 ≡ x mod p .

b) Given x, y 6≡ 0 mod p and x2 ≡ y2 mod p2, prove that x ≡ ±y mod p2.

Proof. We proof the statement by contradiction. First, rewrite the right hand side to
become a statement of divisibility.

x2 ≡ y2 mod p2

⇔ p2 | (x2 − y2)
⇔ p2 | (x− y)(x + y)

p2 has the three divisors {1, p, p2}. Assume that for some a, b, c that a | bc. If gcd(a, b) =
1, i.e., a and b are relative prime, then a | c. Set a = p2, b = x− y, and c = x + y.



i) If gcd(p2, x− y) = 1, then p2 | (x + y)⇔ x ≡ −y mod p2.
ii) If gcd(p2, x + y) = 1, then p2 | (x− y)⇔ x ≡ y mod p2.

iii) If gcd(p2, x− y) = p2, then p2 | (x− y)⇔ x ≡ y mod p2.
iv) If gcd(p2, x + y) = p2, then p2 | (x + y)⇔ x ≡ −y mod p2.
v) If gcd(p2, x− y) = p, then p2 - (x− y), but, by assumption, p2 | (x− y)(x + y)

and it follows that p | (x + y).

⇒ x− y = k · p ∧ x + y = l · p ⇔ 2x = (k + l) · p ⇔ x = k + l

2 · p

⇒ x ≡ 0 mod p, a contradiction.

vi) If gcd(p2, x + y) = p, then an analogous argumentation to the previous case can
be calculated.

In other words, the last two cases are not possible and the first four cases are the
remaining solutions to the original statement of divisibility:

x ≡ ±y mod p2

c) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p = q.

i) Alice calculates n = p2 and sends n to Bob.
ii) Bob calculates c ≡ x2 mod n and sends c to Alice. With high probability

p - x⇔ x ≡ 0 mod p (therefore, Bob almost always loses).
iii) The only two solutions ±x are calculated by Alice (see below) and sent to Bob.

Bob cannot factor n, as

gcd(x− (±x), n) =

gcd(0, n) = n

gcd(2x, n) = gcd(2x, p2) = 1
.

Alice always wins.

d) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p =

√
n as a real number and

win the game.

Note: The two solutions ±x to x2 ≡ c mod p2 can be calculated as follows.
Let p be an odd prime and x, y 6≡ 0 mod p. If x2 ≡ y2 mod p2, then x2 ≡ y2 mod p, so
x ≡ ±y mod p.
Let x ≡ y mod p. Then

x = y + ap .

By squaring we get

x2 = y2 + 2apy + (ap)2

⇒ x2 ≡ y2 + 2apy mod p2 .



Since x2 ≡ y2 mod p2, we obtain

0 = 2apy mod p2 .

Divide by p to get
0 = 2ay mod p .

Since p is odd and p - y, we must have p | a. Therefore, x = y + ap ≡ y mod p2. The case
x ≡ −y mod p is similar.
In other words, if x2 ≡ y2 mod p2, not only x ≡ ±y mod p, but also x ≡ ±y mod p2.
As we can find square roots modulo a prime p, we have x = b solves x2 ≡ c mod p. We
want x2 ≡ c mod p2. Square x = b + ap to get

b2 + 2bap + (ap)2 ≡ b2 + 2bap ≡ c mod p

⇒ b2 = c mod p .

Since b2 = c mod p the number c− b2 is a multiple of p, so we can divide by p and get

2ab = c− b2

p
mod p .

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

a = c− b2

p
· 2−1 · b−1 mod p .

Therefore, we have x = b + ap.
This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’s Lemma.
Example: p = 7, p2 = 49, c = 37. Then

b = c
p+1

4 = 37
7+1

4 = 372 ≡ 4 mod p ,

b−1 ≡ 2 mod p , 2−1 ≡ 4 mod p ,

a = c− b2

p
· 2−1 · b−1 = 37− 42

7 · 4 · 2 ≡ 3 mod p

x = b + ap = 4 + 3 · 7 = 25

Check: x2 = 252 ≡ 37 = c mod p2.

Solution of Problem 9
Recall the definition of the Legendre symbol:

(
a

p

)
=


0 , a ≡ 0 mod p

1 , a is a quadratic residue modulo p
−1 , otherwise

,

with p > 2 prime, a ∈ N. Also, recall that c ∈ Z∗
n is a quadratic residue modulo n, if

∃x ∈ Z∗
n : x2 ≡ c mod n.

Claim:
(

a
p

)
≡ a

p−1
2 mod p for p > 2 prime.



Proof. (i) a = 0⇒ a
p−1

2 = 0

(ii) a is a quadratic residue modulo p. With Eulers criterion and p > 2 prime:

c ∈ Z∗
p is a quadratic residue modulo p⇔ c

p−1
2 ≡ 1 mod p

(iii) a is a quadratic nonresidue modulo p. If a is a quadratic nonresidue modulo p, then
a

p−1
2 ≡ −1 mod p because (

a
p−1

2
)2
≡ ap−1 ≡ 1 mod p

and a
p−1

2 6≡ 1 mod p.

a)
(

−1
p

)
= (−1)

p−1
2 from claim.

b) (
a

p

)(
b

p

)
(claim)=

(
a

p−1
2 mod p

) (
b

p−1
2 mod p

)
= (ab)

p−1
2 mod p

(claim)=
(

ab

p

)

c) Assumption: a ≡ b mod p. (
a

p

)
= a

p−1
2 mod p

(Assumption)= b
p−1

2 mod p

=
(

b

p

)

Solution of Problem 10
The proof references line numbers. Below is the same version of the algorithm computing
the Jacobi symbol as in the script, but with line numbers added.
Input: odd integer n > 2, integer a, 0 ≤ a < n
Lines 2-4: special case a = 0⇒

(
a
n

)
= 0.

Lines 5-7: special case a = 1⇒
(

a
n

)
= 1.



Algorithm 1 Computing the Jacobi (and Legendre) symbol
Input: An odd integer n > 2 and an integer a, 0 ≤ a < n.
Output: The Jacobi symbol

(
a
n

)
(and hence the Legendre symbol, when n is prime)

1: procedure JACOBI(a, n)
2: if (a = 0) then
3: return 0
4: end if
5: if (a = 1) then
6: return 1
7: end if
8: Write a = 2ea1, where a1 is odd
9: if (e is even or n ≡ 1 (mod 8) or n ≡ 7 (mod 8)) then

10: s← 1
11: else
12: s← −1
13: end if
14: if (n ≡ 3 (mod 4) and a1 ≡ 3 (mod 4)) then
15: s← −s
16: end if
17: n1 ← n mod a1
18: if (a1 = 1) then
19: return s
20: end if
21: return s·JACOBI(n1, a1)
22: end procedure



Line 8: Decomposition of
(

a
n

)
(

a

n

)
=
(2ea1

n

)
Remark 9.9=

(2e

n

)(
a1

n

)
a1, n are odd

Hint=
(2e

n

)
︸ ︷︷ ︸

line 9−13
(Note 1)

(−1)
a1−1

2
n−1

2︸ ︷︷ ︸
line 14−16
(Note 2)

(
n

a1

)
︸ ︷︷ ︸

a1>2=
(

n mod a1

a1

)
=
(

n1

a1

)
︸ ︷︷ ︸

line 17−21
(Note 3)

=
( 2

n

)e
(

n mod a1

a1

)
(−1)

(a1−1)(n−1)
4

Note 1: (2e

n

)
=
( 2

n

)e
Hint=

(
(−1)

n2−1
8

)e

e even:
(

2
n

)e
= 1 (line 9-10)

e odd:
(

2
n

)e
=
(

2
n

)2k+1
=
(

2
n

)
= (−1)

n2−1
8 , k ∈ N0 : e = 2k + 1

Note that n2−1
8 is integer as, with n = 2l + 1, l ∈ N,

(2l + 1)2 − 1 = 4l2 + 4l + 1− 1 = 4l(l + 1) ≡ 0 mod 8 .

With n = 8m + k, where m ∈ N0, k ∈ {1, 3, 5, 7}, we can write
n2 − 1

8 = (8m + k)2 − 1
8 = (8m)2 + 16mk + k2 − 1

8

= 16m(4m + k) + k2 − 1
8 = 2m(4m + k)︸ ︷︷ ︸

even

+k2 − 1
8 ,

and it follows that
(−1)

n2−1
8 = (−1)

(n mod 8)2−1
8 .

In other words, we can find all possibile outcomes of (−1)n2−1
8 , n odd integer, by looking at

(−1) k2−1
8 for k ∈ {1, 3, 5, 7}.

k k2 − 1 k2−1
8

(
2
n

)
= (−1)

k2−1
8 line

1 0 0 1 9,10
3 8 1 -1 11,12
5 24 3 -1 11,12
7 48 6 1 9,10

Note 2:
(−1)

a1−1
2

n−1
2 = −1⇔ a1 − 1

2
n− 1

2 odd⇔ a1 − 1
2 ∧ n− 1

2 odd

⇔ a1 ≡ 3 mod 4 ∧ n ≡ 3 mod 4 (lines 14− 16)

Note 3 (line 18f):
If
(

a
n

)
=
(

2e

n

) (
a1
n

)
=
(

2e

n

) (
1
n

)
=
(

2e

n

)
with (−1)

a1−1
2

n−1
2 = 1 line 19⇒

(
a
n

)
=
(

2e

n

)
· 1. Else(

a
n

)
= s ·

(
a1
n

)
.


