Elliptic Curves

Definition
The set of points (x,y), satisfying the equality

v =ad4ar+0b
with
4a® 4+ 270% £ 0
is called an elliptic curve. a, b, and the variables x and y are elements of

the same algebraic structure M.

» Some point o is included to form the neutral element.

» a and b are called parameters of the elliptic curve.
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Elliptic Curves over the Reals

» Simple graphical representation of the curve
» Graphical representation of addition and doubling of points
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_10_
y? =a% — 6z + 10

13



Elliptic Curves over the Reals

» Simple graphical representation of the curve
» Graphical representation of addition and doubling of points




Elliptic Curves over the Reals

» Simple graphical representation of the curve
» Graphical representation of addition and doubling of points

4a® + 2762 =0

13



Elliptic Curves over the Reals

» Simple graphical representation of the curve
» Graphical representation of addition and doubling of points




Elliptic Curves over the Reals

» Simple graphical representation of the curve
» Graphical representation of addition and doubling of points




Elliptic Curves over the Reals

» Simple graphical representation of the curve
» Graphical representation of addition and doubling of points

4a® + 2762 =0

13
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» Simple graphical representation of the curve
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Elliptic Curves over the Reals
Graphical Representation of Addition

y? =22 —62+6

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08 14
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Elliptic Curves over the Reals
Graphical Representation of Addition
» Define a line through P and Q.

» The third intersecting point on the curve is -R.
» Mirror the point —R at the z-axis to obtain R =P + Q.

y? =22 —62+6



Elliptic Curves over the Reals
Graphical Representation of Addition

» Special case P+ (—P) = c©
» oo is the neutral element w.r.t. addition of points.

y>? =23 -6 +6

RWTH R. Mathar — Canterbury University - CSSE, 28.3.0 14



Elliptic Curves over the Reals
Graphically doubling a point, P + P

y? =22 —62+6

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08 15



Elliptic Curves over the Reals

Graphically doubhn%la point, P 4
» Draw the tangent I|ne at the elliptic curve in P.

» The second intersecting point of the tangent line defines —R.
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Elliptic Curves over the Reals

Graphically doubhn%la point, P 4
» Draw the tangent I|ne at the elliptic curve in P.

» The second intersecting point of the tangent line defines —R.
» Mirror —R at the z-axis to obtain R = 2P.

y? =22 —62+6



Elliptic Curves over the Reals
Graphically doubling a point, P + P

» Special case 2P = oo, if yp =0

y? =2 — 62 +6

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08 15



Elliptic Curves over the Reals

Algebraic representation of addition

» R=P+ Q@ with P # £+Q:

_Yr—Ya
Tp —IQ

S

afR:SQ—Z‘p—J)Q

Yr = —yp +s(xp — TR)

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08
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Algebraic representation of addition

» R=P+ Q@ with P # £+Q:
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Tp —IQ
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.2
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Elliptic Curves over the Reals

Algebraic representation of addition

» R=P+ Q@ with P # £+Q:

_Yr—Ya
:L’pfiL’Q

S

JJR:SQ—Z‘p—wQ

yr = —yp + s(xp — TR)

» P+ P = Doubling of points

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08
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Elliptic Curves over the Reals
Algebraic doubling of points

» R =2P with yp #0:

_ 375 +a
2yp
TR = s — 2xp

yr = —yp + s(xp — TR)

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08
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Elliptic Curves over the Reals
Algebraic doubling of points

» R =2P with yp #0:

_ 375 +a
2yp
TR = s2 — 2xp

yr = —yp + s(xp — TR)

» 2P =00, if yp =0

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08
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Elliptic Curves over Finite Fields
Finite field F,, _ .
In cryptography elliptic curves over finite fields are used.

» Avoid floating point arithmetic.
» No rounding errors, essential for deciphering messages.



Elliptic Curves over Finite Fields
Finite field F,, _ .
In cryptography elliptic curves over finite fields are used.

» Avoid floating point arithmetic.
» No rounding errors, essential for deciphering messages.

Elliptic curves over F,
y? =% +ar +b (mod p)  with a,b,z,y integers € {0,1,...,p— 1}

RWTH R. Mathar — Canterbury University — CSSE, 28.3.0¢
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Finite field F,, _ .
In cryptography elliptic curves over finite fields are used.

» Avoid floating point arithmetic.
» No rounding errors, essential for deciphering messages.

Elliptic curves over F,
y? = 2% +ax +b (mod p)  with a,b,z,y integers € {0,1,...,p— 1}

20
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Elliptic Curves over Finite Fields
Finite field F,, _ .
In cryptography elliptic curves over finite fields are used.

» Avoid floating point arithmetic.
» No rounding errors, essential for deciphering messages.

Elliptic curves over F,
y? = 2% +ax +b (mod p)  with a,b,z,y integers € {0,1,...,p— 1}

20 y2:aj3—|—$in Faos
15
10 Algebraic Formulae as
5 above with reduction
modulo p
0
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Elliptic Curves over Finite Fields
Finite field Fpk

Each a € [F,,» is represented as coefficients
(ag—1,---,a0) € {0,...,p— 1}* of a polynomial of order k — 1:

k—2
E azx—ak 1:1: +ak 2T +...+a1x+ag

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08
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Elliptic Curves over Finite Fields
Finite field F

Each a € F,» is represented as coefficients
(ag—1,---,a0) € {0,...,p— 1}* of a polynomial of order k — 1:

k-1
flx) = Z a;xt = ap_12" P+ ap_22" 2+ ...+ arz + ag
i=0
Definition
A polynomial f;..(x) is called irreducible over the field IF,, if
> deg firr(x) >0

» There is no factorization f..(x) = g(z) - h(x)
with deg g(z) > 0 and deg h(z) > 0.

RWTH R. Mathar — Canterbury University = CSS
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Finite field F
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Elliptic Curves over Finite Fields
Finite field F
Each a € F,» is represented as coefficients
(ag—1,---,a0) € {0,...,p— 1}* of a polynomial of order k — 1:

k—2
E aa“ = Qp_ 1:1: —&—ak 2T +...+a1x+ag

Definition
A polynomial f;..(x) is called irreducible over the field IF,, if
> deg firr(z) >0
» There is no factorization f..(x) = g(z) - h(x)
with deg g(z) > 0 and deg h(z) > 0.

Elliptic curve over F
y? =3 +ar +b (mod f;..)  with a,b, ,y polynomials

Algebraic formulae as above with reduction modulo f,.,

RWTH R. Mathar — Canterbury University = CSS
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Diffie-Hellman Key Exchange

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B

RWTHAACHEN R. Mathar — Canterbury University - CSSE, 28.3.08
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» selects an integer
ka €{2,...,n— 1} at random.
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Diffie-Hellman Key Exchange

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B

» selects an integer
ka €{2,...,n— 1} at random.

> Q =FksG
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Diffie-Hellman Key Exchange

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B
» selects an integer > selects an integer
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Diffie-Hellman Key Exchange

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B
» selects an integer > selects an integer
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Diffie-Hellman Key Exchange

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B
» selects an integer > selects an integer
ka €{2,...,n— 1} at random. kg € {2,...,n— 1} at random.
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» transmits point  to user B. » transmits point R to user A.
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Diffie-Hellman Key Exchange

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B
» selects an integer > selects an integer
ka €{2,...,n— 1} at random. kg € {2,...,n— 1} at random.
> ) =kasG » R=kpG
» transmits point  to user B. » transmits point R to user A.
» K =kaR = kAkBG
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Diffie-Hellman Key Exchange

Cryptographic Framework

v

v

v

» Elliptic curve over the finite field I,

» Generator GG of some cyclic subgroup of order n

User A User B
selects an integer > selects an integer
ka €{2,...,n— 1} at random. kg € {2,...,n— 1} at random.
Q =ksG » R=kpgG
transmits point () to user B. » transmits point R to user A.
K =ksR =kakpG > K =kpQ = kakpG

R. Mathar — Canterbury University — CSSE, 2
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ElGamal Encryption over Elliptic Curves

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator G of some cyclic subgroup of order n

Private and public key of each user

Sender Receiver

RWTHAACHEN R. Mathar — Canterbury University — CSSE, 28.3.08 21



ElGamal Encryption over Elliptic Curves

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator G of some cyclic subgroup of order n

Private and public key of each user

» Each user selects an integer private key d € {2,...,n — 1} at
random.

> () = dG is the public key.

Sender Receiver
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ElGamal Encryption over Elliptic Curves

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator G of some cyclic subgroup of order n

Private and public key of each user

» Each user selects an integer private key d € {2,...,n — 1} at
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> () = dG is the public key.

Sender Receiver

> selects a random integer
ke{2,...,n—1}.
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ElGamal Encryption over Elliptic Curves

Cryptographic Framework

» Elliptic curve over the finite field I,

» Generator G of some cyclic subgroup of order n

Private and public key of each user

» Each user selects an integer private key d € {2,...,n — 1} at
random.

> () = dG is the public key.

Sender Receiver
» selects a random integer > M =Cy—dCy
ke{2,...,n—1}.
> Cl = kG

» Co =M+ kQ
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