
TIplain themeElliptic Curves

De�nition
The set of points (x,y), satisfying the equality

y2 = x3 + ax + b

with

4a3 + 27b2 6= 0

is called an elliptic curve. a, b, and the variables x and y are elements of
the same algebraic structure M .

I Some point ∞ is included to form the neutral element.

I a and b are called parameters of the elliptic curve.
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TIplain themeElliptic Curves over the Reals
I Simple graphical representation of the curve

I Graphical representation of addition and doubling of points
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Graphical Representation of Addition

I De�ne a line through P and Q.

I The third intersecting point on the curve is -R.

I Mirror the point −R at the x-axis to obtain R = P + Q.
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TIplain themeElliptic Curves over the Reals
Graphical Representation of Addition

I Special case P + (−P ) =∞
I ∞ is the neutral element w.r.t. addition of points.
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Graphically doubling a point, P + P

I Draw the tangent line at the elliptic curve in P .

I The second intersecting point of the tangent line de�nes −R.

I Mirror −R at the x-axis to obtain R = 2P.
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TIplain themeElliptic Curves over the Reals
Graphically doubling a point, P + P

I Special case 2P =∞, if yP = 0
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Algebraic representation of addition

I R = P + Q with P 6= ±Q:

s =
yP − yQ

xP − xQ

xR = s2 − xP − xQ

yR = −yP + s(xP − xR)

I P + (−P ) =∞
I P + P ⇒ Doubling of points
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Algebraic doubling of points

I R = 2P with yP 6= 0:

s =
3x2

P + a

2yP

xR = s2 − 2xP

yR = −yP + s(xP − xR)

I 2P =∞, if yP = 0
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TIplain themeElliptic Curves over Finite Fields
Finite �eld Fp

In cryptography elliptic curves over �nite �elds are used.

I Avoid �oating point arithmetic.

I No rounding errors, essential for deciphering messages.

Elliptic curves over Fp

y2 = x3 + ax + b (mod p) with a, b, x, y integers ∈ {0, 1, . . . , p− 1}
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Algebraic Formulae as
above with reduction
modulo p
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TIplain themeElliptic Curves over Finite Fields
Finite �eld Fpk

Each a ∈ Fpk is represented as coe�cients
(ak−1, . . . , a0) ∈ {0, . . . , p− 1}k of a polynomial of order k − 1:

f(x) =
k−1∑
i=0

aix
i = ak−1x

k−1 + ak−2x
k−2 + . . . + a1x + a0

De�nition
A polynomial firr(x) is called irreducible over the �eld Fpk , if

I deg firr(x) > 0
I There is no factorization firr(x) = g(x) · h(x)

with deg g(x) > 0 and deg h(x) > 0.

Elliptic curve over Fpk

y2 = x3 + ax + b (mod firr) with a, b, x, y polynomials

Algebraic formulae as above with reduction modulo firr

R. Mathar � Canterbury University � CSSE, 28.3.08 19
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TIplain themeDi�e-Hellman Key Exchange

Cryptographic Framework

I Elliptic curve over the �nite �eld Fpk

I Generator G of some cyclic subgroup of order n

User A

I selects an integer
kA ∈ {2, . . . , n− 1} at random.

I Q = kAG

I transmits point Q to user B.

I K = kAR = kAkBG

User B

I selects an integer
kB ∈ {2, . . . , n− 1} at random.

I R = kBG

I transmits point R to user A.

I K = kBQ = kAkBG
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Cryptographic Framework

I Elliptic curve over the �nite �eld Fpk

I Generator G of some cyclic subgroup of order n

Private and public key of each user

I Each user selects an integer private key d ∈ {2, . . . , n− 1} at
random.

I Q = dG is the public key.

Sender

I selects a random integer
k ∈ {2, . . . , n− 1}.

I C1 = kG

I C2 = M + kQ

Receiver

I M = C2 − dC1
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