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Solution of Problem 1
a) Given x = —z mod p, prove that z =0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

—r=x modp
& 0=2z modp
& 0=z modp.

[

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p=4q.
i) Alice calculates n = p? and sends n to Bob.

ii) Bob calculates ¢ = 22 mod n and sends ¢ to Alice. With high probability p{ z <
x # 0 mod p (therefore, Bob almost always loses).

iii) The only two solutions £z are calculated by Alice (see below) and sent to Bob.
Bob cannot factor n, as

ged(0,n) =n

god(w — (=),m) = {gcd(2a:, n) = ged(2z, p?) = 1

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p = y/n as a real number and win
the game.

Note: The two solutions +z to 22 = ¢ mod p? can be calculated as follows.

Let p be an odd prime and z,y # 0 mod p. If 22 = 4> mod p?, then 22 = ?> mod p, so
r =+y mod p.

Let x =y mod p. Then
r=y-+ap.



By squaring we get

22 = y* + 2apy + (ap)?

= 22 = y? 4+ 2apy mod p*.

Since 22 = y? mod p?, we obtain
0=2apy mod p?.
Divide by p to get
0=2ay mod p.
Since p is odd and p { y, we must have p | a. Therefore, * =y + ap =y mod p?. The case
xr = —y mod p is similar.

In other words, if 22 = y> mod p?, not only x = £y mod p, but also x = £y mod p?. At
this point, we have shown that only two solutions exist.

Now, we show how to find £z, where 22 = ¢ mod p?. As we can find square roots modulo a
prime p, we have x = b solves 22 = ¢ mod p. We want 2> = ¢ mod p?. Square x = b+ ap to

get
b? + 2bap + (ap)* = b* +2bap = ¢ mod p
=0 =c modp.
Since b*> = ¢ mod p the number ¢ — b? is a multiple of p, so we can divide by p and get

— b
2ab = ¢

mod p.

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

c—b?

p

271 b7 mod p.

a =

Therefore, we have x = b + ap.

This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’'s Lemma.

Ezample: p =17, p* =49, ¢ = 37. Then

b=c"T =37 =372 =4 mod p,

b'=2 modp, 27'=4 modp,

0—62.271.1)71:37—42

P 7
r=b+ap=4+3-T=25

+4-2=3 modp

a =

Check: 22 = 252 = 37 = ¢ mod p*.



Solution of Problem 2
Recall the definition of the Legendre symbol:

0 ,a=0 modp
a
() =141 ,a is a quadratic residue modulo p ,
—1 ,otherwise

with p > 2 prime, a € N. Also, recall that ¢ € Z is a quadratic residue modulo n, if
dr € Z¥ : 2> = ¢ mod n.

Claim: (%) =a"7 mod p for p > 2 prime.
Proof. (i) a=0= a"T =0

(ii) a is a quadratic residue modulo p. With Eulers criterion and p > 2 prime:

p—1

c € Z, is a quadratic residue modulo p < ¢ 2 =1 mod p

ii) a is a quadratic nonresidue modulo p. If a is a quadratic nonresidue modulo p, then
iii i drati id dul If ai drati id dul th
a"*= = —1 mod p because

(aT>2Eap’151 mod p

and o'z # 1 mod p.

a) (%) = (—1)172;1 from claim.

b)

() (2) = 0 mots) (5 mot )

= (ab)p%1 mod p

(claim) (ab)
p
<a> = ap%1 mod p
p

(Assumption)

c) Assumption: a =b mod p.

p=1
b2 modp



Solution of Problem 3

The proof references line numbers. Below is the same version of the algorithm computing the
Jacobi symbol as in the script, but with line numbers added.

Algorithm 1 Computing the Jacobi (and Legendre) symbol

Input: An odd integer n > 2 and an integer a, 0 < a < n.
Output: The Jacobi symbol (%) (and hence the Legendre symbol, when n is prime)

1: procedure JACOBI(a,n)

2 if (a =0) then

3 return 0

4: end if

5: if (a =1) then

6 return 1

7 end if

8 Write a = 2°a,, where a; is odd

9: if (eisevenorn =1 (mod 8) or n =7 (mod 8)) then
10: s+ 1

11: else

12: s+ —1

13: end if

14: if (n =3 (mod 4) and a; =3 (mod 4)) then
15: S < —S§

16: end if

17: ny < n mod a;

18: if (a1 = 1) then

19: return s

20: end if
21: return s-JACOBI(ny,a,)
22: end procedure

Input: odd integer n > 2, integer a, 0 < a <n
Lines 2-4: special case a =0 = (%) = 0.

Lines 5-7: special case a =1 = (9) =1.

n

Line 8: Decomposition of (%)
a 2°a 2¢ a
<> = < 1> Rematk 9.9 () <1> ai,n are odd
n n n n
s € a]—1 n—
Hint <2> (_1)17171 <n>
n/ s—m——— aq
159/13 line 14—16 ~——
aq aq
line 17—21
(Note 3)

- (3) (mmete) gy e
)= ()

Note 1:




e even: (%)e =1 (line 9-10)
eodd: (2)" = (2)2’“+1 =(2) = (—1)* 5, keNg:e—2k+1

n n

Note that ”28_1 is integer as, with n =2+ 1, [ € N,

(2+1?—-1=4P+4+1-1=4(+1)=0 mod 8.
With n = 8m + k, where m € Ny, k € {1,3,5,7}, we can write

n?—1 Bm+k)?2—-1 (8m)?+16mk+k*—1

8 8 N 8
1 4 k E2—1 E2—1
_ 16m{dm + ) + = 2m(4m + k) + :
8 —_— 8
and it follows that
n?-1 (n_mod 8)?-1
(1) = (-
n?-1

In other words, we can find all possibile outcomes of (—1) s , n odd integer, by looking at
(—1)"5 for k € {1,3,5,7}.

24

B -1 B (2) = (D5 line

10 0 1 9,10

308 1 1 11,12

5 24 3 1 11,12

748 6 1 9,10

Note 2: ) 1 1 I 1
a1—-n—-1 a; —1n— a] — n —

e R | dd dd
(=1) 3 g T T Ao

<a;=3 modd A n=3 mod4 (lines 14 — 16)

Note 3 (line 18f): L .
10~ ()(2) = ()08 = (£) w097 =17 )= (5) .




