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Solution of Problem 1
p—1

We have a generator a = ¢ mod p, with g € Z7, q | p—1, p,q prime and a # 1. By
definition of the order of a group, we know that:

a® %@ =1 mod .
Recall: ord,(a) = min{k € {1,....,o(p)} | a* =1 mod p}. With a # 1 — ord,(a) > 1. Next,
1

o
we compute a? and substitute g ¢ :

- q erma’
al = (gpql> =g ! P 1 mod D.

From this we obtain 1 < ord,(a) < gq.
Yet to show: Does a k € Z with k < ¢ exist so that k is the order of the group?
This is a proof by contradiction.

Assume the subgroup has indeed k = ord,(a) < ¢, i.e., 3k < ¢ : k = ord,(a). Then:

ad=d*" el r <k,
=da"
!
=1 mod p.

We distinguish two possible cases:

e ord,(a)f¢=a"=1 mod p, with 1 <r <ord,(a) 4 (Def. of ord,(a))

e ordy(a) [ ¢g=a’=1 mod p v
Since ¢ is prime = ord,(a) | ¢ there are only two divisors of ¢, namely 1 and ¢:

e ord,(a) =1 4 (since a # 1 is assumed)

e or ord,(a) = ¢ 4 (We obtain k = ¢ and not the demanded k < q)

The cyclic subgroup has order ¢ in Zj, if a is chosen according to the algorithm.



Solution of Problem 2
Choose a pair (@,0) € Z x Z such that ged(v,q) = 1, so that ¢ is invertible modulo q.

The forged signature is constructed by:

r = (a"y” mod p) mod q,

1

s=rv " mod q,

Then (r, s) is a valid signature for the message m = st mod gq.

Check verification procedure of the DSA:

1. Check 0 <7 <¢q,0<s<gq. v (due to modulo q)

1

2. Compute w = s~ mod q.

3. In this step, no hash-function is used by the given assumption, i.e., h(m) = m:
w =wm=s st =u mod g,
us =rw =rs-' mod gq.
) X i

4. v =aMy"? = " = ¢ = ¢%(a®)" = (a¥y® mod p) mod q.

5. The forged DSA signature is valid, since v = r holds. v’

Solution of Problem 3

a) We demand the following conditions on the two prime parameters p and g¢:
i) 2159 < g < 2160,
i) 21028 < p < 21024,
iii) ¢ | p— 1.
We use a stepwise approach going through i), ii), and iii).
Our suggested algorithm to find a pair of primes p and g is:

1) Get a random odd number g with 215 < ¢ < 2160,

3) Get a random even number k with [&:’ﬂ <k< {%AX*IJ and set p = kq + 1.

)
2) Repeat step 1) if ¢ is not prime. (e.g., use the Miller-Rabin Primality Test)
)
4) If p is not prime, repeat step 3).

Check if the algorithm finds a correct pair of primes p, ¢ according to i), ii), and iii):

e With step 1), 2! < ¢ < 2!%0 holds, as demanded in i). v/
e Due to step 2), ¢ is prime. v/
e Due to step 3), it holds:

i)
p=hq+1> |22 g4+1> 2%,

i)
p=kq+1< L2102(1471J g+1< 21024,

and therefore 2192 < p < 21024 holds, as demanded in ii). v/



e Step 3) also provides p = kq+ 1 < ¢ | p— 1, as demanded in iii).
An even k ensures that p is an odd number.

e Step 4) provides that p is also prime.
Altogether, the proposed algorithm works.

b) In steps 2) and 4), a primality test is chosen (here: Miller-Rabin Primality Test), such
that the error probability for a composite ¢ is negligible.

The success probability of finding a prime of size x is about —~~. (cf. hint)

In(z)
If even numbers (these are obviously not prime) are skipped, the success probability
doubles. The success probability of finding a single prime is estimated by:

{p€Z|p<n, pprime }|
= )

psucc,p ~2-

The combined probability of success for a pair of primes p and q is approximately:

2 2 1 ~ _5
~ In(2190) * In(21021) — 80.512In(2)2 5.08 - 107




