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Solution of Problem 1
Parameters: n = pq with p, q ≡ 3 mod 4, and p, q secret primes.
Each user chooses an arbitrary sequence of seeds s1, ...sK ∈ {1, ..., n− 1},
with gcd(si, n) = 1 and publishes: vi = (s2

i )−1 mod n.
A public hash function is applied:

H : {0, 1}∗ → {(b1, ..., bK) | bi ∈ {0, 1}}

Signature generation:

(i) A chooses an arbitrary value r ∈ {1, ..., n− 1} and calculates x ≡ r2 mod n. (witness)

(ii) A calculates: h(m, x) = (b1, ..., bk) (challenge)
and afterwards y ≡ r

∏K
j=1 s

bj

j mod n (response)

(iii) The signature of m is (x, y):
A→ B : m, x, y

Verification:

(i) B calculates h(m, x) = (b1, ..., bK). (challenge)

(ii) B calculates z ≡ y2 ∏K
j=1 v

bj

j mod n. (response)

(iii) B accepts the signature if z = x holds.

Proof that this signature and verification scheme is correct:

z = y2 ∏K

j=1 v
bj

j ≡ r2︸︷︷︸
≡x

∏K

j=1 s
2bj

j

∏K

j=1 v
bj

j︸ ︷︷ ︸
≡1

≡ x mod n. �



Solution of Problem 2

a) The secret service (MI5) chooses an arbitrary seed s ∈ Zn per iteration.
The MI5 calculates the quadratic residue y ≡ s2 mod n:

MI5 → JB: y

JB calculates the four square roots of y modulo n using the factors p, q of n.
JB chooses a square root x:

JB → MI5: x

The MI5 verifies that x2 ≡ y mod n.
Since JB has no information about s, he chooses the x with probability 1

2 , such that
x 6≡ ±s mod n.
If the MI5 receives such an x, n can be factorized:

y ≡ s2 ≡ x2 mod n

⇒ s2 − x2 ≡ 0 mod n

⇒ (s− x)(s + x) ≡ 0 mod n.

The probability that JB always fails by sending x ≡ ±s mod n in all 20 submissions is:

1
220 = 1

1048576 ≈ 10−6.

b) Zero-knowledge property: No information about the secret may be revealed during the
response.
However, in this protocol it is even possible, that the full secret s is revealed. Hence,
this is not secure a zero-knowledge protocol!

c) A passive eavesdropper E can only obtain the values x and y. E only knows the square
roots ±x of y modulo n, which is useless in the next iteration. This knowledge is not
sufficient to factorize n.

Solution of Problem 3
By definition: E : Y 2 = X3 + aX + b with a, b ∈ K and ∆ = −16(4a3 + 27b2) 6= 0 describes
an elliptic curve.

a) Here: E : Y 2 = X3 + X + 1, i.e., a = b = 1, K = F7. Then,

∆ = −16(4a3 + 27b2) = −16(4 + 27) ≡ 5 · 3 ≡ 1 6≡ 0 mod 7 .

It follows that E is an elliptic curve in F7.

b) We use the following table to determine the points.
It follows from the third column that,

Y 2 ∈ {0, 1, 2, 4} = A ,



z z−1 z2 z3 1 + z + z3

0 - 0 0 1
1 1 1 1 3
2 4 4 1 4
3 5 2 6 3
4 2 2 1 6
5 3 4 6 5
6 6 1 6 6

and from the last column that

1 + X + X3 ∈ {1, 3, 4, 5, 6} = B .

Furthermore,
C = A ∩B = {1, 4} .

With Y 2 = 1⇔ Y ∈ {1, 6} and 1 + X + X3 = 1⇔ X = 0

⇒ (0, 1), (0, 6) ∈ E(F7) .

With Y 2 = 4⇔ Y ∈ {2, 5} and 1 + X + X3 = 4⇔ X = 2

⇒ (2, 2), (2, 5) ∈ E(F7) .

We can determine the set of all points on E,

E(F7) = {O, (0, 1), (0, 6), (2, 2), (2, 5)} .

For the trace t it holds
#E(Fq) = q + 1− t .

Here, q = 7, and #E(F7) = 5, so

5 = 7 + 1− t⇔ t = 3 .

Note (Hasse): t < 2√q = 2
√

7 ≈ 5.3

c) With the group law addition, E(F7) is a finite abelian group. It holds ord(P ) |#E(F7)
(Lagrange’s theorem). It follows for P 6= O : 1 < ord(P ) = 5, i.e., every P 6= O is a
generator. The addition for P = (x, y), P1 = (x1, y1), P2 = (x2, y2) is defined by

(i) P +O = P

(ii) P + (x,−y) = O ⇒ −P = (x,−y)
(iii) If P1 6= ±P2 ⇒ P3 = (x3, y3) = P1 + P2 with z = y2−y1

x2−x1
, x3 = z2 − x1 − x2,

y3 = z(x1 − x3)− y1.

(iv) If P1 6= −P1 ⇒ 2P1 = P1 + P1 = (x3, y3) with c = 3x2
1+a

2y1
, x3 = c2 − 2x1,

y3 = c(x1 − x3)− y1.



Start with P = (0, 1).

2P = 2 · (0, 1) (iv)= (2, 5)

using c = 1
2 = 2−1 Table= 4⇒ x3 = 42 ≡ 2⇒ y3 = 4(−2)− 1 ≡ 5 mod 7

3P = (2, 5) + (0, 1) (iii)= (2, 2)

using z = −4
−2 = 4 · 2−1 = 2⇒ x3 = 4− 0− 2 = 2

⇒ y3 = 2(2− 2)− 5 ≡ 2 mod 7
4P = (2, 2) + (0, 1) = (0, 6)

5P = (0, 6) + (0, 1) (ii)= O

6P = O + (0, 1) (i)= (0, 1)


