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Solution of Problem 1

a) E.p:y*=2+ax+bwith a,b € F7, P = (1,1), P, = (6,2)

P=1=14a+b&sa+b=0a=—-b mod?7
Po=4=6-6b+bebb=2<b=6=a=1 mod7
=y’ =2"+2+6

Calculate A = —16(4a® + 270*) =5(4+ (—1)- 1) =15=1#0 mod 7. It follows F; ¢
is an eliptic curve over F;.

b) FEg1:y*=2®+6x+ 1. With
A= —16(4a® +270*) =5(4-(-1)* =1-1)=3#0 mod 7

is Fg1 an elliptic curve over F7.
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=y € {0,1,2,4}
2* +6x+1€{0,1,2,4,5}
:>E6,1(IF7) = {(07 1)v (07 6)’ (17 1)7 (17 6)? (2a 0)7 (37 2)7 (3’ 5)a
(5,3),(5,4),(6,1),(6,6), 0}
#Ee,1(F7) = 12



The solutions for the inverses are

Note: #E@l(]F7) =q+ 1l—-tet=7T4+1-— #E671(F7) =8—-12=—4
c) It holds ord(P)|#Es1(F7) = 12 = ord(P) € {1,2,3,4,6,12} (c.f. Lagrange’s theorem).

d) As just observed, the order of the subgroup generated by @ = (1,1) may be ord(Q) €
{1,2,3,4,6,12}. We will eliminate one element after another from the set until we reach
ord(Q) = 12. The conclusion will be that @) is a generator.

Q #£ 0 = ord(Q) € {2,3,4,6,12}
4@Q) # O (known from exercise) = ord(Q) € {2,3,6,12}

Calculate 2Q).

2Q0 = (1,1)+(1,1) = (z,y), with

342 31462
x:< xl“‘) —2:,;1_< ki ) —2
2y1 2
92
:(2> 2= (942 -2=12—-2=6
31+ a 9
= —a)—p=-(1-6)—1
v= (25 -0 - = a-0)
—1-2-1=1
=2Q =(6,1)

Let ord(Q) = 2, then 4Q = O, a contradiction = ord(Q) € {3, 6, 12}

Q +2Q # O (see inverses above) = ord(Q) € {6,12}
2Q +4Q # O (see inverses above) = ord(Q)) = 12

We conclude that @) is a generator.



Solution of Problem 2

a) A=—16(4-43+27-1) = 4528 = -3 =2#0 mod 5.

= F is an elliptic curve.

b) We use the following table to determine the points.
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This provides that y* € {0,1,4} and 23 + 4z + 1 € {0, 1,2}.

So we only need to consider the cases where both terms are either equal 0:

P Hdr+1=0=>2z=3
P=0=y=0

or equal 1:

P rdr+1=1=2¢c{0,1,4}

y'=1=ye{l4}

This enables us to find all the points on the curve:

E(F3) = {0, (0,1),0,4), (1,1), (1,4), (4, 1), (4,4), (3,0)}
The total number of points on the curve is #E(F5) = 8.
c) Is @ = (1,1) a generator of the curve?
(@)
20 =Q+Q

r=(3-+4)2- 1)) -2-1=2-27)Y-2=-1=4
y=11-4)-1=-3-1=-4=1

2Q) = (4,1) is a point on the curve.

1Q Y 20 + 20
r=(3-42+4H2- 1)) -4.2=(2-271)*-4.2=3
y=20

4Q) = (3,0) is a point on the curve.

8Q Y 4Q +4Q
(3,0) + (3,0) = O, as this point is selfinverse

Hence (1,1) is a generator of the curve.



d) The binary representation of 45 is 101101.

A5P = P+ 4P + 8P + 32P
= P+2°P+2’P42°P
=P+2.2P4+2-2.-2P4+2-2.2.2.2P
=P+22(P+2P)+2-2-2-2-2P
=P +202(P+2(P+2-2P))))

The last line corresponds to the representation of Horner’s scheme.

e) The iterative algorithm starts with the point P. Then it iterates through the bits of k
from the MSB k,, downto kqy. It doubles if the current k; is zero or it doubles and adds
otherwise. At the end of the loop it returns the computed point () = kP.

Algorithm 1 fi (P k = kp,, ..., ko)

Q « P;
for ¢ < m — 2 downto 0 do
Q + 20; // Double

if k; == 1 then // if i-th the bit is 1
Q<+ Q+P; //Add
end if;
end for;
return Q);

When the iterative algorithm is applied to the given example with k& = 45, we obtain
the following sequence from the for-loop:

P,2P,2(2P) + P,2(2(2P) + P),2(2(2(2P) + P)),2(2(2(2(2P) + P))) + P

The last outcome can be reformulated to 2(2(2(2(2P)+ P)))+ P = 2°P+23P+2?P+ P
which corresponds to the binary expansion of 45P.

f) In the recursive algorithm, it calls itself recursively without the last bit.

Algorithm 2 fi..(P, k)

if £ ==1 then
return P;
else
if £ mod 2 =0 then // i.e., the LSB is zero
return 2 - fi..(P k >> 1); // Double, right-shift k& by one bit
else // otherwise the LSB is one
return P+ 2 - fo(P,k >>1); // Double and Add, right-shift k& by one bit
end if;
end if;

When the recursive algorithm is applied to the given example with k = 45, we obtain
45P = P+ 2(2(P + 2(P + 2(2P)))) which corresponds to the Horner’s scheme of 45P.



