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Solution of Problem 1

a) Eα : Y 2 = X3 + αX + 1 in F13.

α = 2
∆ = −16(4a3 + 27b2) = 10(4 · 23 + 27) = 10 · 59 ≡ 5 6≡ 0 mod 13

⇒ E2 is an elliptic curve.

b)

0P = O
1P = (0, 1)
2P = (0, 1) + (0, 1) = (1, 11)

using x3 =
(

3 · 02 + 2
2 · 1

)2

− 2 · 0 = (2 · 2−1)2 = 1

y3 = 1 · (0− 1)− 1 = −2 = 11
3P = (1, 11) + (0, 1) = (8, 10)

using x3 =
(1− 11

0− 1

)2
− 1− 0 = (3 · 12)2 − 1 = 362 − 1 = 8

y3 = 36(1− 8)− 11 = 10
4P = (8, 10) + (0, 1) = (2, 0)

using x3 =
(1− 10

0− 8

)2
− 8− 0 = (4 · 5−1)2 − 8 = (4 · 8)2 − 8 = 2

y3 = 20(8− 0)− 3 = 1

c) 〈P 〉 ⊆ {O, (0, 1), (1, 11), (8, 10), (2, 0), (0, 12), (1, 2), (8, 3)}, where (0, 1) = −(0, 12),
(1, 11) = −(1, 2), (8, 10) = −(8, 3) and (2, 0) = −(2, 0). We start with the five points
calculated earlier. Then we add the inverse elements, as they must be elements of the
subgroup. With #〈P 〉 = #E(F13) is P a cyclic generator of order #〈P 〉 = 8.
Note: equivalent solutions are possible.

d) With bi = iP , a = jm+ i, gj = Q− jmP

bi = gj ⇔ iP = Q− jmP ⇔ Q = (i+ jm)P ⇔ Q = aP

i+mj covers all numbers between 0, . . . , q − 1.



e) The babysteps have already been computed. Compute giantsteps: Q − jmP until
Q− jmP = iP for some i with j = 0, . . . ,m− 1.

j = 0 : (8, 3)− 0(2, 0) = (8, 3)
j = 1 : (8, 3)− (2, 0) = (8, 3) + (2, 0) = (0, 1) = P

with x3 =
(0− 3

2− 8

)2
− 8− 2 = (10 · 2)2 − 10 = 0

y3 = 20(8− 0)− 3 = 1

⇒j = 1, i = 1
⇒k = i+ jm = 1 + 1 · 4 = 5
Q = 5P ⇒ 5(0, 1) = (8, 3)

Check:

5P = 4P + P = (2, 0) + (0, 1) = (8, 3)

using x3 =
(1− 0

0− 2

)2
− 1− 0 = 162 − 2 = 8

y3 = (1 · 6)(2− 8)− 0 = 6 · 7− 0 = 42 = 3

Solution of Problem 2

(a) Discrete Logarithm.

(b)

βyvr ≡ βk+arvr mod p

≡ βk+arβ−ar mod p

≡ βk mod p

≡ γ mod p

(c) A random number needs to be generated first. Step 1 requires an exponentiation modulo
p. Step 3 comprises one additon and one multiplication modulo p.
The modular exponentiation is computationally intensive, but this can be precomputed
offline, before the scheme is executed. That means the scheme is designed such that is
can be fast even if Alice uses a smartcard.

(d)

v = β−a = (βa)−1 = (205)−1 ≡ 30−1 ≡ 45 mod 71
γ = βk = 2010 ≡ 48 mod 71

y = k + ar = 10 + 5 · 4 ≡ 2 mod 7

γ = 48 !≡ βyvr = 202454 = 48 mod 71X



Solution of Problem 3

a) We have α = (5n+ 7) and β = (3n+ 4) (3P)

The Bezout lemma states that iff a and b are coprime then the following equation has
integer solutions:

α · x+ β · y = 1

Therefore,
(5n+ 7) · x+ (3n+ 4) · y = 1

Now, we apply the EEA to the previous equation:

(5n+ 7) = (3n+ 4) + (2n+ 3)
(3n+ 4) = (2n+ 3) + (n+ 1)
(2n+ 3) = 2(n+ 1) + 1

Now backwards:

1 = (2n+ 3)− 2(n+ 1)
= (2n+ 3)− 2(−(2n+ 3) + (3n+ 4))
= 3(2n+ 3)− 2(3n+ 4)
= (2n+ 3) + 2(2n+ 3)− 2(3n+ 4)
= 3(2n+ 3)− 2(3n+ 4)
= 3((5n+ 7)− (3n+ 4))− 2(3n+ 4)
= 3(5n+ 7)− 3(3n+ 4)− 2(3n+ 4)
= 3(5n+ 7)− 5(3n+ 4)

Therefore, x = 3 and y = −5 which prove that α and β are relatively prime

b) The steps to generate the first prime p are the following: (3P)

• Using a random number generator, we generate a random number of size K/2
• Set the lowest bit of the generated integer to ensure that the number will be odd
• Set the two highest bits of the integer to ensure that the highest bits of n will be

set
• Using the MRPT, we check if the resulting integer is prime. If not, we increment

the value by 2 and check again

The entire procedure is analogous for q.



c) The given RSA cryptosystem has the following parameters: (3P)

p = 11, q = 13, e = 7 and n = p · q = 143

Using the Euler function: φ(n) = 10 · 12 = 120

Having the expression: m = cd mod n, we need to calculate the gdc(e, φ(n)) = 1

120 = 17 · 7 + 1
7 = 1 · 6 + 1

Now backwards

1 = 7− (1 · 6)
= 7− 6(120− 17 · 7)
= 7− (6 · 120) + 102 · 7
= 103 · 7− 6 · 120 −→ d = 103

m ≡ cd mod n ≡ 31103 mod 143. Therefore, applying the SM algorithm we obtain
m = 47

d) Since gcd(eA, eB) = 1, there exist integers x and y with eA · x + eB · y. Therefore,
m = m1 = meA·x+eB ·y = (meA)x · (meB )y ≡ cA

x · cBy. Since Claire has access to the
values cA and cB she can calculate m. (2P)

e) The requirements of a digital signature are: (2P)

• it must be verifiable
• it must be forgery-proof
• it must be firmly connected to the document

f) Oskar wants to obtain a chosen signature s = md mod n (2P)

• Oskar generates a message m2 = m ·m−1 mod n and asks again to sign a message
m2, obtaining s2 = m2

d mod n
• From the pairs (m1, s1) and (m2, s2) the wanted signature s on message m can be

recovered as s = s1 · s2 mod n

Proof :

s ≡ s1 · s2 ≡ m1
d ·m2

d ≡ m1
d · (m ·m−1)d ≡

≡ m1
d ·md ≡ mdmodn


