

Dr. Michael Reyer

Tutorial 3 - Proposed Solution -

Friday, November 9, 2018

Solution of Problem 1

Let p = 31, q = 43. As described in the script, the initial value x_0 of the Blum-Blum-Shub generator is computed from x_{t+1} .

$$d_1 = \left(\frac{p+1}{4}\right)^{t+1} = 8^{10} \equiv 4 \pmod{(p-1)}$$

$$d_2 = \left(\frac{q+1}{4}\right)^{t+1} = 11^{10} \equiv 25 \pmod{(q-1)}$$

$$u = x_{t+1}^{d_1} \equiv 1306^4 \equiv 4^4 \equiv 8 \pmod{p}$$

$$v = x_{t+1}^{d_2} \equiv 1306^{25} \equiv 16^{25} \equiv 4 \pmod{q}$$

 ${\rm SQM:} \; a=16; \, k=25=(11001)_2; \, n=43; \, {\rm calculate} \; a^k \mod n.$

bit	X	x^2	$\mod 43$	ax^2	$\mod 43$
1	a = 16		41		11
0	11		35		-
0	35		21		-
1	21		11		4

Compute the inverse $ap + bq = 1 = \gcd(p, q)$ using the Extended Euclidean Algorithm (EEA).

n	a_n	b_n	$\int f_n$	r_n	c_n	d_n
0				p = 43	1	0
1				q = 31	0	1
2	p = 43	q = 31	1	12	1	-1
3	31	12	2	7	-2	3
4	12	7	1	5	3	-4
5	7	5	1	2	-5	7
6	5	2	2	1	13	-18

With for $n \in \mathbb{N}_0$: $r_n = c_n \cdot p + d_n \cdot q$ and for $n \geq 2$:

$$a_n=f_n\cdot b_n+r_n \qquad , \text{ with } f_n\in\mathbb{N},\ 0\leq r_n< b_n$$

$$c_n=c_{n-2}-f_n\cdot c_{n-1}$$

$$d_n=d_{n-2}-f_n\cdot d_{n-1}$$

$$a_{n+1}=b_n$$

$$b_{n+1}=r_n$$

Hence, $1 = \gcd(43, 31) = 13 \cdot 43 - 18 \cdot 31 = b \cdot q + a \cdot p$. We can calculate x_0 as:

$$x_0 = (vap + ubq) \mod n$$

 $\equiv 4 \cdot (-18) \cdot 31 + 8 \cdot 13 \cdot 43$
 $\equiv -2232 + 4472$
 $\equiv 434 + 473 \equiv 907 \pmod{1333}$

Compute x_1, \ldots, x_9 with $x_{i+1} = x_i^2 \mod n$.

Use the last five digits of the binary representation of x_i for b_i . E.g., $x_1 = 188_{10} = 10111100_2 \Rightarrow b_1 = 11100$. With $m_i = c_i \oplus b_i$, $1 \le i \le 9$, we can decipher the cryptogram.

i	1	2	3	4	5	6	7	8	9
x_i	188	686	47	876	901	4	16	256	219
c_i	10101	01110	00011	01000	10111	00101	11110	01101	11000
b_i	11100	01110	01111	01100	00101	00100	10000	00000	11011
m_i	01001	00000	01100	00100	10010	00001	01110	01101	00011
	J	A	M	Е	S	В	О	N	D

Solution of Problem 2

Recall the RSA cryptosystem: n = pq, $p \neq q$ prime and $e \in \mathbb{Z}_{\varphi(n)}$ with $\gcd(e, \varphi(n)) = 1$. The public key is (n, e).

Our pseudo-random generator based on RSA is:

- a) Select a random seed $x_0 \in \{2, \ldots, n-1\}$.
- **b)** Iterate: $x_{i+1} \equiv x_i^e \mod n, i = 0, \dots, t$.
- c) Let b_i denote the last h bits of x_i , where $h = \lfloor \log_2 \lfloor \log_2(n) \rfloor \rfloor$.
- d) Return the pseudo-random sequence b_1, \ldots, b_t of $h \cdot t$ pseudo-random bits.

Solution of Problem 3

a) With a block cipher $E_K(x)$ with block length k, the message is split into blocks m_i of length k each, $m = (m_0, \ldots, m_{n-1})$. Take $m = (m_0)$ and $\hat{m} = (m_0, m_1, m_1)$ with m_0, m_1 arbitrary. Then,

$$h(\hat{m}) = E_{m_0}(m_0) \oplus \underbrace{E_{m_0}(m_1) \oplus E_{m_0}(m_1)}_{=0} = E_{m_0}(m_0) = h(m).$$

Thus, h is neither second preimage resistant nor collision free.

Given $y \in \mathcal{Y}$, choose m_0 . Then calculate

$$c = E_{m_0}(m_0),$$

$$m_1 = D_{m_0}(c \oplus y).$$

It follows that

$$h(m_0, m_1) = E_{m_0}(m_0) \oplus E_{m_0}(D_{m_0}(c \oplus y)) = c \oplus c \oplus y = y.$$

Hence, h is *not* preimage resistant, either.

b) \hat{h} replaces XOR (\oplus) by AND (\odot) and remains the same as h otherwise. Take $m = (m_0, m_0)$, with m_0 chosen arbitrarily. Then,

$$\hat{h} = E_{m_0}(m_0) \odot E_{m_0}(m_0) = E_{m_0}(m_0) = \hat{h}((m_0)).$$

 \hat{h} is neither second preimage resistant nor collision free.

c) The more blocks are hashed the more bits are 0.