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Solution of Problem 1

Ci = Mi+1 ⊕ EK(Ci−1), i = 1, . . . , n− 1 (1)
MAC(n)

K = EK(Cn−1) (2)
C0 = M1 (3)
Ĉi = EK(Ĉi−1 ⊕Mi), i = 1, . . . , n− 1 (4)

M̂AC
(n)
K = EK(Ĉn−1 ⊕Mn) (5)
Ĉ0 = 0 (6)

We show that the equivalency
MAC(n)

K = M̂AC
(n)
K (7)

holds, by induction over n.

Proof. n = 1:

MAC(1)
K

(2)= EK(C0)
(3)= EK(M1)

(6)= EK(Ĉ0 ⊕M1)
(5)= M̂AC

(1)
K

n→ n + 1:

MAC(n+1)
K

(2)= EK(Cn) (1)= EK(Mn+1 ⊕ EK(Cn−1))
(2)= EK

(
Mn+1 ⊕MAC(n)

K

)
(7)= EK

(
Mn+1 ⊕ M̂AC

(n)
K

)
(5)= EK

(
Mn+1 ⊕ EK

(
Ĉn−1 ⊕Mn

))
(4)= EK

(
Mn+1 ⊕ Ĉn

) (4)= Ĉn+1
(2)= M̂AC

(n+1)
K



Solution of Problem 2
In the ElGamal verification v1 ≡ v2 (mod p) needs to be fulfilled.
Recall that y = ax mod p and r = ak mod p are used:

yrrs ≡ ah(m) (mod p)
⇔ axraks ≡ ah(m) (mod p)

Fermat⇔ xr + ks ≡ h(m) (mod p− 1).

Now, we expand both sides of the congruence with u = h(m)−1h(m′) mod p− 1:

x r u + k s u ≡ h(m)h(m)−1h(m′) ≡ h(m′) (mod p− 1) (8)
⇔ xr′ + ks′ ≡ h(m′) (mod p− 1) (9)

Fermat⇔ axr′
aks′ ≡ ah(m′) (mod p)

⇔ yr′
rs′ ≡ ah(m′) (mod p)

!⇔ yr′(r′)s′
≡ ah(m′) (mod p).

The equivalence assumption in the last line holds if r ≡ r′ (mod p).
Note: In the ElGamal scheme, the condition 1 ≤ r < p must be checked!
From (8) and (9), we have r u ≡ r′ (mod p− 1).
We have to solve the following system of two congruences w.r.t. r′:

r′ ≡ r u (mod p− 1),
r′ ≡ r (mod p).

By means of the Chinese Remainder Theorem, we get the parameters:

a1 = r mod p, a2 = r u mod (p− 1),
m1 = p, m2 = p− 1,
M1 = p− 1, M2 = p,
y1 = M−1

1 ≡ p− 1 (mod p), y2 = M−1
2 ≡ 1 (mod p− 1),

M = p(p− 1).

The Chinese Remainder Theorem leads to the solution:

r′ =
∑2

i=1 aiMiyi = r(p− 1)2 + r u p

≡ r(p2 − p− p + 1 + u p)
≡ r(p(p− 1)− p + 1 + u p)
≡ r(u p− p + 1) (mod M = p(p− 1)).

The forged signature

(r′, s′) with r′ = r(u p− p + 1) mod M, and s′ = s u mod (p− 1)

is a valid signature of h(m′), if 1 ≤ r < p is not checked.



Solution of Problem 3
We have p ≡ 3 (mod 4), a is a primitive element modulo p, y = ax mod p, and a | p− 1.
Assume that it is possible to find z such that arz ≡ yr (mod p), as given in the description.
Let s = p−3

2 (h(m)− rz) mod p− 1. From a | p− 1 if follows that there exits a v ∈ Z such
that va = p− 1.
Choose r = v.
Task: Show that (r, s) is a valid signature.
Inserting the provided s yields:

v1 ≡ yrrs ≡ arzr
p−3

2 (h(m)−rz)

≡ arz(r
p−3

2 )h(m)−rz (mod p). (10)
Furthermore,

va = ra ≡ p− 1 (mod p)⇔ r ≡ a−1(p− 1) ≡ −(a−1) (mod p).

To obtain (10), we exponentiate the above equation by the power of p−3
2 :

⇔ r
p−3

2 ≡ (−(a−1))
p−3

2 (mod p).
Note that (−1) mod p is self-inverse:

⇔ r
p−3

2 ≡
(

(−a)
p−3

2
)−1

(mod p).

For p−3
2 even, we obtain (−1)

p−3
2 = 1, and with that:

⇒ r
p−3

2 ≡
(

(−1)
p−3

2 a
p−3

2
)−1

≡ (a
p−3

2 )−1 ≡ a−
p−3

2

≡ a−( p−1
2 −1) ≡ a−

p−1
2 +1

≡ a−
p−1

2︸ ︷︷ ︸
≡−1 mod p

a ≡ −a (mod p).

For the last line, note that a is a primitive element and that
(

a
p−1

2
)2
≡ 1 (mod p).

This result provides the following for (10):

v1 ≡ yrrs ≡ arzr
p−3

2 (h(m)−rz)

≡ arz(−a)h(m)−rz

≡ arzah(m)−rz(−1)h(m)−rz (mod p).
As m is chosen such that h(m)− rz is even:

v1 ≡ arzah(m)−rz

≡ ah(m) ≡ v2 (mod p),
so that the forged signature is valid.


