

Dr. Michael Reyer

Tutorial 9 - Proposed Solution -

Friday, January 11, 2019

Solution of Problem 1

- a) $q \mid p-1 : 7 \mid 71-1 = 70 \checkmark$
 - $\beta \in \mathbb{Z}_p^*$ shall have order q = 7. $\beta^2 \mod p = 20^2 \mod p = 45$

 $\beta^4 \mod p = 45^2 \mod p = 37$

 $\beta^6 \mod p = \beta^2 \cdot \beta^4 \mod p = 45 \cdot 37 \mod p = 32$

 $\beta^7 \mod p = \beta \cdot \beta^6 \mod p = 20 \cdot 32 \mod p = 1$

- $2^t < q : 2^2 = 4 < 7 \checkmark$
- b) $v \equiv \beta^{-a} \equiv \beta^{-5} \equiv \beta^2 \equiv 45 \pmod{71}$
- c) 1. A chooses $r = 3 \in \{1, \dots, q-1\}$ and computes the witness $x = \beta^r \mod p = 20^3 \mod 71 = 48$ and sends it to B.
 - 2. B chooses $e = 4 \in \{1, \dots, 2^t\}$ and sends it to A as challenge.
 - 3. A checks $1 \le e = 4 \le 2^t = 4$, computes $y = a \cdot e + r = 5 \cdot 4 + 3 = 23 \equiv 2 \pmod{7}$ and sends it to B.
 - 4. B computes $z = \beta^y \cdot v^r \equiv 20^2 \cdot 45^4 \equiv 45 \cdot 37^2 \equiv 45 \cdot 20 \equiv 48 \pmod{71}$ and sees that $48 = x = z = 48\checkmark$

Solution of Problem 2

We have the polynomial over \mathbb{F}_7

$$q(X) = X^3 + 5.$$

- a) The secret is 5.
- b) Four pairs (i, q(i)), $i \in \mathbb{F}_7$ need to be issued. The candidates are (1, 6), (2, 6), (3, 4), (4, 6), (5, 4), (6, 4).
- c) Now we have the four pairs (1,6), (2,2), (3,5), and (4,0), named as (x_i,y_i) , $i=1,\ldots,4$. The polynomial over \mathbb{F}_7 has the form

$$r(X) = aX^{3} + bX^{2} + cX + d = (X^{3}, X^{2}, X, 1) \cdot (a, b, c, d)^{T}$$

with $a, b, c, d \in \mathbb{F}_7$ and d is the secret. Moreover, those points must fulfill $y_i = r(x_i)$ which is equivalent to $A \cdot (a, b, c, d)^T = y$, where $y = (y_1, y_2, y_3, y_4) = (6, 2, 5, 0)$ and

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 4 & 2 & 1 \\ 6 & 2 & 3 & 1 \\ 1 & 2 & 4 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & | & 6 \\
1 & 4 & 2 & 1 & | & 2 \\
6 & 2 & 3 & 1 & | & 5 \\
1 & 2 & 4 & 1 & | & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & | & 6 \\
0 & 3 & 1 & 0 & | & 3 \\
0 & 3 & 4 & 2 & | & 4 \\
0 & 1 & 3 & 0 & | & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & | & 6 \\
0 & 1 & 5 & 0 & | & 1 \\
0 & 0 & 4 & 4 & | & 2
\end{pmatrix}
\longrightarrow$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & | & 6 \\
0 & 1 & 5 & 0 & | & 1 \\
0 & 0 & 4 & 4 & | & 2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & | & 6 \\
0 & 1 & 5 & 0 & | & 1 \\
0 & 0 & 4 & 4 & | & 2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & | & 6 \\
0 & 1 & 5 & 0 & | & 1 \\
0 & 0 & 1 & 0 & | & 0 \\
0 & 0 & 0 & 1 & | & 4
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 0 & | & 0 \\
0 & 0 & 0 & 1 & | & 4
\end{pmatrix}$$

Hence, $r(X) = X^3 + X^2 + 4$ and the secret is d = 4.

Solution of Problem 3

a) The binary representation of 45 is 101101.

$$45P = P + 4P + 8P + 32P$$

$$= P + 2^{2}P + 2^{3}P + 2^{5}P$$

$$= P + 2 \cdot 2P + 2 \cdot 2 \cdot 2P + 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2P$$

$$= P + 2(2(P + 2P) + 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2P)$$

$$= P + 2(2(P + 2(P + 2 \cdot 2P))))$$

The last line corresponds to the representation of Horner's scheme. It also holds.

$$45P = 2(2(2(2(2P + O \cdot P) + 1 \cdot P) + 1 \cdot P) + O \cdot P) + 1 \cdot P$$

b) The iterative algorithm starts with the point Q = P. Then it iterates i from m-1 downto 0. It doubles in all iterations Q and adds P if the current bit k_i is one. At the end of the loop it returns the computed point Q = kP.

When the iterative algorithm is applied to the given example with k = 45, we obtain the following sequence from the for-loop.

$$P, 2P + O \cdot P, 2(2P + O \cdot P) + P, 2(2(2P + O \cdot P) + P) + P, 2(2(2(2P + O \cdot P) + P) + P) + O \cdot P,$$
$$2(2(2(2(2P + O \cdot P) + P) + P) + O \cdot P) + P$$

 $\mathbf{c})$ In the recursive algorithm, it calls itself recursively without the last bit.

When the recursive algorithm is applied to the given example with k = 45, we obtain 45P = P + 2(2(P + 2(2P)))) which corresponds to the Horner's scheme of 45P.

Algorithm 1 $f_{it}(P, k = (k_m, \dots, k_0)_2)$

```
Q \leftarrow P
for i \leftarrow m-1 downto 0 do
Q \leftarrow 2Q // Double
if k_i = 1 then // if i-th bit is 1
Q \leftarrow Q + P // Add
end if
end for
return Q
```

Algorithm 2 $f_{rec}(P, k = (k_m, \dots, k_0)_2)$

```
\begin{array}{ll} \textbf{if } m=0 \textbf{ then} & // \textbf{ This implies } k=1 \\ \textbf{return } P & \\ \textbf{else} & \\ \textbf{if } k_0=0 \textbf{ then} & \\ \textbf{return } 2 \cdot f_{\text{rec}}(P,(k_m,\ldots,k_1)_2) & // \textbf{ Double} \\ \textbf{else} & \\ \textbf{return } P+2 \cdot f_{\text{rec}}(P,(k_m,\ldots,k_1)_2)) & // \textbf{ Double and Add} \\ \textbf{end if} & \\ \textbf{end if} & \end{array}
```