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Solution of Problem 1

a) The Rabin cryptosystem requires n = p q with primes p 6= q and p, q ≡ 3 (mod 4).
As
√

989 < 32 start with p = 31 which is prime and fulfills p ≡ 3 (mod 4). Then n
p

is no integer. Next smaller prime with p ≡ 3 (mod 4) is p = 23. Then for q = 43 it
holds n = p q. Moreover, q ≡ 3 (mod 4) such that all conditions are fulfilled.

b) Let p = 7, q = 23, n = p q, c = 116. Following Prop 9.3 it holds.

kp = p + 1
4 = 2 kq = q + 1

4 = 6

xp,1 = ckp = 1162 ≡ 2 (mod 7)

xp,2 = −xp,1 = −2 ≡ 5 (mod 7)

xq,1 = ckq = 1166 ≡ 1 (mod 23)

xq,2 = −xq,1 = −1 ≡ 22 (mod 23)

Following Prop. 9.4 you apply the Extended Euclidean Algorithm and get:

an bn fn rn cn dn

23 1 0
7 0 1

23 7 3 2 1 -3
7 2 3 1 -3 10

gcd(p, q) = s · p + t · q = 10 · 7 + (−3) · 23 = 1.

Compute the resulting square root modulo n.

a ≡ tq ≡ −3 · 23 ≡ −69 ≡ 92 (mod 161)

b ≡ sp ≡ 10 · 7 ≡ 70 (mod 161)

We obtain the four different messages as fi,j = a · xp,i + b · xq,j mod 161.

f1,1 ≡ 92 · 2 + 70 · 1 ≡ 254 ≡ 93 (mod 161) (1)

f1,2 ≡ 92 · 2 + 70 · 22 ≡ 1724 ≡ 114 (mod 161) (2)



f2,1 ≡ 92 · 5 + 70 · 1 ≡ 530 ≡ 47 (mod 161) (3)

f2,2 ≡ 92 · 5 + 70 · 22 ≡ 2000 ≡ 68 (mod 161) (4)

Finally, we transform the obtained values into binary notation.

(1) 93 = . . . 11012

(2) 114 = . . . 00102

(3) 47 = . . . 11112 X

(4) 68 = . . . 01002

The message is m = 47.

c) Oscar chooses m at random and computes c = m2 mod n.
c is deciphered with plaintext m′.
With probability 1

2 is m′ 6= ±m. In this case compute gcd(m−m′, n) ∈ {p, q}. Otherwise,
repeat the previous steps.

d) In this case the solution of the Rabin cryptosystem can be obtained computing the
square roots in the real domain. This vulnerability can be solved by padding and/or
allowing messages bigger than

√
n only.



Solution of Problem 2

a) • Easy to compute,
• Preimage resistant, i.e., given y it is infeasible to find m s.t. h(m) = y.
• 2nd preimage resistant, i.e., given m it is infeasible to find m′ s.t. h(m) = h(m′).
• Collision-free, i.e., it is infeasible to find m 6= m′ s.t. h(m) = h(m′).

b) Given, h(m) ≡ m2 − 1 ≡ (m + 1)(m − 1) (mod L). Let m′ = m + kL with k ∈ N.
h(m′) ≡ (m′ + 1)(m′ − 1) ≡ (m + kL + 1)(m + kL − 1) ≡ (m + 1)(m − 1) ≡ h(m)
(mod L).
(Other solutions: h(m′) ≡ (m + kL)2 − 1 ≡ m2 − 1 (mod L)
h(−m) ≡ (−m)2 − 1 ≡ m2 − 1 (mod L).)

c) Verification

1) Obtain the authentic public key (v1, v2, ..., vt).
2) Steps 2) to 4) are identical to the signature generation procedure 1) to 3) above.
5) Accept the signature if and only if vij

= h(sj) for all 1 ≤ j ≤ u holds.

d) For m = 10 we obtain the bitstream m̂ = 01010 (with n = 5 bits). The number of zeros
is 3 and t = 5 + blog2(5)c+ 1 = 8.This leads to the concatenated message:

ŵ = 01010|011 = (a1, ..., a5)||(a6, ..., a8).

The positions with aj = 1 are 2, 4, 7, 8.
The signature for m = 10 is: (k2, k4, k7, k8) = (36, 24, 9, 34).

e) Eve can generate signatures for arbitrary messages as soon as all keys have been used
at least once. After Alice has signed a message, some keys are available for Eve so that
she can already sign some messages.



Solution of Problem 3

a) Show that a is a primitive element modulo p

a
p−1
pi 6≡ 1 (mod p), ∀i = 1, . . . , k,

with the prime factorization p − 1 = ∏k
i=1 pti

i ⇒ a is a primitive element modulo pi

prime.
In this case, 112 = 24 · 7 and hence,
3112

7 ≡ 49 6≡ 1 (mod 113)

3112
2 ≡ 112 6≡ 1 (mod 113)

b) s = k−1(h(m)− xr) mod p− 1
r = ak mod p⇒ 319 ≡ 80 (mod 113) by SQM then
s ≡ 59(77− 66 · 80) ≡ 15 (mod 112)

c) v1 ≡ yr · rs ≡ yr · (au · yv)s ≡ yr · aus · yvs ≡ yr+vs · aus ≡ 1 · aus (mod p) v2 ≡ am ≡ aus

(mod p)

d) r̂ = ak mod p

ŝ = k−1(ĥ− xr̂) mod p− 1

It holds v1 ≡ yr̂r̂ŝ ≡ aĥ ≡ v2 (mod p)
r′ = r̂(h′ĥ−1p− p + 1) mod p(p− 1)
s′ = ŝh′ĥ−1 mod p− 1

s′ ≡ k−1(ĥ− xr̂) · h′ĥ−1 ≡ k−1(h′ − xr̂h′ĥ−1)) (mod p− 1)
It should be
r′ ≡ r̂ (mod p)
r′ ≡ r̂h′ĥ−1 (mod p− 1) by Chinese Remainder Theorem it holds.
M = p(p− 1) , M1 = p− 1 , M2 = p
y1 ≡ (p− 1)−1 ≡ −1 (mod p)
y2 ≡ p−1 ≡ 1 (mod p− 1) ⇒
⇒ r′ = r̂(p− 1)(−1) + r̂h′ĥ−1 · p · 1 mod p(p− 1)

e) It holds r′ > p− 1 with high probability.



Solution of Problem 4

a) It must hold the following:

Y 2
m ≡ X3

m + a ·Xm (mod p).

Let g be a generator of Fp, then it exists i ∈ Fp, s. t. gi ≡ m3 + a ·m (mod p). There
are two different possibilities:

• If i is even, X.
• If i is odd, then

(p−m)3−a(p−m) ≡ −m3−a ·m ≡ −gi ≡ (−1) ·gi ≡ g
p−1

2 gi ≡ gi+ p−1
2 (mod p).

As i and p−1
2 are odd, as p ≡ 3 (mod 4), the sum i + p−1

2 is even. This means
y = g

i
2 + p−1

4 mod p. Note that −1 ≡ g
p−1

2 (mod p) as g is generator and Fp is a
field.

b) Let m = x = 6.
y2 = x3 + a x = 63 + 1 · 6 = 222 ≡ 91 (mod 131)
2114 ≡ 91 (mod 131)⇒ 257 ≡ y (mod 131)⇒ y = 22

24 ≡ 16 (mod 131)
28 ≡ 125 (mod 131)
216 ≡ 36 (mod 131)
232 ≡ 117 (mod 131)
257 ≡ 232 · 216 · 28 · 21 ≡ 22 (mod 131)

222 ≡ 91 (mod 131)
It holds that (6, 22) is the corresponding point on the EC.

c) For an EC it must hold ∆ = −16(4a3 + 27b2) 6≡ 0 (mod p). With b = 0 it holds.
∆ ≡ −64 a3 ≡ −a3 6≡ 0 (mod 7).
This is true for 1 ≤ a ≤ 6.

d) Inserting the point (3, 2) into the Elliptic curve equation:
4 = 27 + 3a ⇐⇒ 5 ≡ 3a (mod 7) ⇐⇒ a = 4.



e) We create the following table.

x x2 x3 x3 + x
0 0 0 0
1 1 1 2
2 4 1 3
3 2 6 2
4 2 1 5
5 4 6 4
6 1 6 5

Considering y2 ≡ x3 + x (mod 7) leads to
E1(F7) = {(0, 0); (1, 3); (1, 4); (3, 3); (3, 4); (5, 2); (5, 5);O}.

f) It holds |E1(F7)| = 8 = p + 1 − t ⇒ t = 0. This means the order is 8 and the trace
is t = 0.

g) As | < P > | | |E1(F7)| it holds that | < P > | ∈ {1, 2, 4, 8}.
| < P > | 6= 1 as P = (3, 3) 6= O
| < P > | 6= 2 as 2P = (1, 4) 6= O
| < P > | 6= 4 as 4P = (1, 4) + (1, 4) 6= O as (1, 4) 6= −(1, 4) = (1, 3).
Hence, | < P > | = 8, i.e., P is generator. Moreover 4P + 4P = O, i.e., 4P = (0, 0) the
only self-inverse point on the EC. It holds:

P = (3, 3)
2P = (1, 4)

4P = −4P = (0, 0)
6P = −2P = (1, 3)
7P = −P = (3, 5)

8P = O.


