

Dr. Michael Reyer

Tutorial 1

Friday, October 26, 2018

Problem 1. (Rabin cryptosystem) Alice and Bob are using the Rabin Cryptosystem. Bob uses the public key $n = 4757 = 67 \cdot 71$. All integers in the set $\{1, \ldots, n-1\}$ are represented as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1. Alice sends the cryptogram c = 1935. Decipher this cryptogram.

Problem 2. (coin flipping) Let p be prime and $p \equiv 3 \pmod{4}$.

- a) Show that if $x \equiv -x \pmod{p}$, then $x \equiv 0 \pmod{p}$.
- **b)** Suppose $x, y \not\equiv 0 \pmod{p}$ and $x^2 \equiv y^2 \pmod{p^2}$. Show that $x \equiv \pm y \pmod{p^2}$. **Hint:** Prop 6.8 might be of help.
- c) Let c be a QR mod p^2 , $b = c^{\frac{p+1}{4}} \mod p$, $a = \frac{c-b^2}{p} 2^{-1} b^{-1} \mod p$ and x = b + ap. Then $x^2 \equiv c \pmod{p^2}$. Calculate x for p = 7 and c = 37.

Consider the coin flipping protocol. Alice cheats by choosing $n = pq = p^2$.

- d) Suppose that Bob suspects that Alice has cheated. Can Bob discover her attempt to cheat? Can Bob use the cheating as an advantage for himself?
- e) Show that Bob almost always loses if he trusts Alice. In which cases should Bob get suspicious?