

Dr. Michael Reyer

Tutorial 10

Friday, January 18, 2019

Problem 1. (Singular points on elliptic curves) Let $E: Y^2 = X^3 + aX + b$ be a curve over the field K with $char(K) \neq 2, 3$ and let $f:=Y^2-X^3-aX-b$.

A point $P = (x, y) \in E$ is called *singular*, if both formal partial derivatives $\partial f/\partial X$ and $\partial f/\partial Y$ are zero at P.

Prove for the discriminant Δ of the curve E that the following holds:

 $\Delta \neq 0 \Leftrightarrow E$ has no singular points.

Problem 2. (Working with elliptic curves I) Consider the equation

$$Y^2 = X^3 + X + 1.$$

- a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_7 .
- **b)** Determine all points in $E(\mathbb{F}_7)$ and compute the trace t of E.
- c) Show that $E(\mathbb{F}_7)$ is cyclic and give a generator.