RWTH

Lehrstuhl fir Theoretische Informationstechnik TI

Exercise 7 in Cryptography

- Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo
2015-06-18

Solution of Problem 20

a) The bit error occurs in block C;, i > 0, with blocksize BS.

’ mode H M; \ max Ferr \ remark ‘
ECB B (Cy) BS only block C; is affected
CBC | ExY(C)) @ Ci_y | BS+1 | C; and one bit in Cj;y
OFB C;® Z; 1 one bit in C;, as Zy = Cy, Z; = Ex(Z;_1)
CFB Cl @D Ek(Cl,l) BS+1 Cl and one bit in CZ‘+1
CTR Cz D EK(Z,) 1 one bit in Cz'; ZO = C(), ZZ = Zz'_l +1

b) If one bit of the ciphertext is lost or an additional one is inserted in block C; at
position j, all bits beginning with the following positions may be corrupt:

’ mode H block \ position ‘

ECB 1 1
CBC ) 1
OFB ) j
CFB i j
CTR | i j

In ECB and CBC, all bits of blocks C}, C;,1 may be corrupt.
In OFB, CFB, CTR, all bits beginning at position j of block C; may be corrupt.

Solution of Problem 21

Let n € N, a € Z with Z! ={b € Z,, | ged(b,n) = 1}.
Consider the map ¥ : Z — Z defined by ¥(z) = ax mod n, with « € Z.

1) Show that ¥ is well-defined, i.e., Vo € Z! = ax € Z.
Z;, is a multiplicative group, i.e., Vo € Z} . Va € Z; = (ax) € Z}. O

2) Show that W is surjective, i.e., Vy € Z dx € ZF : V(z) = y.
y=azr (mod n) = a 'y =2 (mod n) = ¥(aty) =y (mod n).
Since ged(a,n) = 1 holds for all a = Ja~! (mod n). O



3) Show that W¥(z) is injective, i.e., for = # y = U(x) # U(y).
Indirect proof:
Let az = ay (mod n). Since ged(a,n) =1=Ja~ ' € Z : x =y (mod n). [

4) From 2) and 3) = ¥(z) is bijective. [

5) Show that the inverse a=! (mod n) is unique.
Indirect proof:
Let u # v € Z! be inverses of a, i.e., ua =1 (mod n) and va =1 (mod n) holds.

But v = u(va) = (ua)v = v (mod n) is a contradiction = the inverse is unique.
=VaeZ: at. O

6) Show that a®?™ =1 (mod n):

(ILcz. Dz 77 = L. Y@Lz 77 = AL g a) T, =7

5) pairs of unique inverses 4) bijective fct.

= a@(”)(HmZ* I)(erz* ™ H=a®™ (modn). A

1

Solution of Problem 22

a) By the Miller-Rabin Primality Test it will be proven that 341 is composite.
Write n =341 =1+ 85-22 =14 ¢ - 2",

Algorithm 1 Miller-Rabin Primality Test (MRPT)

Write n = 1 + ¢2*, ¢ odd
Choose a € {2,...,n — 1} uniformly distributed at random
y < a? mod n
if (y=1) OR (y=n—1) then
return “n prime*
end if
for (i < 1;i < k; i++) do
y + y> mod n
if (y=n—1) then
return “n prime*
end if
end for
return “n composite

Choose a = 2.
Calculate a? mod n, i.e., 2% mod 341.
Note that 210 = 1024 =3-341+1=1 mod 341.

It follows 2%° = (2'°)%. 2° =32 mod 341.
> 05
Alternatively, 2*° mod 341 is calculated by Square and Multiply, see below. As

y =32 ¢ {1,n — 1} the for-loop starts with i = 1.
y? =322 = (25)2 =21 =1 mod 341, see above.



b)

Furthermore, y = 1 # 340 mod 341.
As i =2 = k = 2 the for-loop terminates and n is stated as composite, which is a
reliable result.

A number n is decomposed according to MRPT as n = 1+¢2*. It follows that MRPT
has at most k squarings. The worst case occurs, if g =1, then n =1+2" & k =
logy(n — 1). With n having 300 digits it follows: n < 103! = ( @ )00 do < 21004 —

<210 <24

k < 1004.
Consequently, less than 1004 squarings are needed. (k = 999.9)

Note, evaluating a? mod n with Square and Multiply takes ¢ squarings. But as
2! < ¢ holds, the worst case is reached, for equality which means ¢t = 0, i.e., ¢ = 1, as
otherwise ¢ would be not odd.

Determining 2% mod 341 by Square and Multiply.
It holds a = 2, z = 85 = (1010101),, i.e., t = 6.

Algorithm 2 Square and multiply

Require: © = (x4,...,79) € Nja € N
Ensure: ¢ mod n

1
2
3
4
ot
6
7
8

Py <—a
:for (i=t—1,i>0,i-) do

y <+ y?> mod n

if (z; =1) then
y<y-a modn

end if

: end for
: return y

The following tabular denotes the evaluation of the Square and Multiply algorithm. The
table is initialized in the first line with ¢ = ¢ = 6 and y = 1. There are ¢ 4 1 lines numbered
from ¢ down to 0. The binary representation of x = (xy..... xg) is given in column two.
Using those values the columns four and five are evaluated row by row. For each row the y
value is taken from the last column of the row above. The final value in the fifth column is
the result of a® mod n.

@]y y> modn | y*(1+ ;- (a—1)) modn
6| 1| 1 1 2
51 0] 2 4 4
41 1] 4 16 32
31 0]32]1024=1 mod 341 1
21 1| 1 1

11 0] 2 4 4
0] 1] 4 16 32

The solution is 2% = 32 mod 341.



Solution of Problem 23

Chinese Remainder Theorem:

Let my, ..., m, be pair-wise relatively prime, i.e., gcd(m;, m;) =1 foralli # j € {1,...
and furthermore let aq,...,a, € N. Then, the system of congruences
r=a; (modm;), i=1,...,r

T
has a unique solution modulo M = [[ m; given by
i=1

r= ZaiMiy,- (mod M),
i=1

where M; = 2y, = M (mod m;), fori=1,...,r.

a) Show that (1) is a valid solution for the system of congruences:

Let i # j € {1,...,r}. Since m; | M; holds for all i # j, it follows:
M; =0 (mod m;).

Furthermore, we have y;M; =1 (mod m;).

Note that from coprime factors of M, we obtain:
_ — -1
ged(Mj,my) =1 = 3y; = M; " (mod m;),
and the solution of (1) modulo a corresponding m; can be simplified to:

r 2 3
T = ZaiMiyi (E) a;M;y; (E) a; (mod m;).

i=1
b) Show that the given solution is unique for the system of congruences:

Assume that two different solutions y, z exist:

y=a; (modm;) A z=a; (modmy), i=1,...r
=0=(y—2) (modmy)
=m; | (y—2)
= M | (y — 2), as my, ..., m, are relatively prime for i =1,...,r,

=y=z (mod M).

This is a contradiction, therefore the solution is unique.
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