

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer

Tutorial 7 Friday, May 31, 2019

Problem 1. (Properties of φ) Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the Euler φ -function, i.e., $\varphi(n) = |\mathbb{Z}_n^*|$.

- **a)** Determine $\varphi(p)$ for a prime p.
- **b)** Determine $\varphi(p^k)$ for a prime p and $k \in \mathbb{N}$.
- c) Determine $\varphi(p \cdot q)$ for two different primes $p \neq q$.
- **d)** Determine $\varphi(4913)$ and $\varphi(899)$.

Problem 2. (Multiplicative property of $\varphi(n)$) Let m, n be two numbers such that gcd(m, n) = 1. Then

$$\varphi(mn) = \varphi(m)\varphi(n).$$

Problem 3. (*MRPT error probability*) The Miller-Rabin Primality Test (MPRT) is applied m times, with $m \in \mathbb{N}$, to check whether n is prime. The number n is chosen according to a uniform distribution on the odd numbers in $\{N, \ldots, 2N\}, N \in \mathbb{N}$.

a) Show that

 $P("n \text{ is composite"} | \text{ MRPT returns } m \text{ times "} n \text{ is prime"}) \leq \frac{\ln(N) - 2}{\ln(N) - 2 + 2^{2m+1}}.$

b) How many repetitions m are needed to ensure that the above probability stays below 1/1000 for $N = 2^{512}$?

Hint: Assume $P("n \text{ is prime"}) = 2/\ln(N)$.