Lehrstuhl für Theoretische Informationstechnik

Homework 12 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier24.01.2012

Solution to Exercise 35.

RWTHAACHEN

Given is an elliptic curve $E: Y^2 = X^3 + aX + b$ over a field K with char $K \neq 2, 3$ (The field is $K = \mathbb{F}_{p^m}$, p is a prime number with p > 3 and $m \in \mathbb{N}$). The elliptic curve can be rewritten as a function of X and Y as

$$f(X,Y) = Y^2 - X^3 - aX - b$$

with the discriminant $\Delta = -16(4a^3 + 27b^2)$. For the derivatives of f in X and Y it holds

$$\frac{\delta f}{\delta X} = -3X^2 - a = 0 \Leftrightarrow a = -3X^2 \text{ and}$$
(1)

$$\frac{\delta f}{\delta Y} = 2Y = 0 \stackrel{\operatorname{char} K \neq 2}{\Leftrightarrow} Y = 0.$$
⁽²⁾

Note that (1) is equivalent to $a \equiv 0$ independent of X, if char K = 3.

The definiton for a singular point of f is given as

$$P = (x, y) \in E(K) \text{ singular } \Leftrightarrow \left. \frac{\delta f}{\delta X} \right|_P = 0 \wedge \left. \frac{\delta f}{\delta Y} \right|_P = 0.$$
(3)

Claim: $\Delta \neq 0 \Leftrightarrow E(K)$ has no singular points.

Proof:

",⇒" Let $\Delta \neq 0$ Assumption: There exists a singular point $(x, y) \in E(K)$. Then we get

$$y^{2} = x^{3} + ax + b$$

$$\stackrel{(1),(2)}{\Leftrightarrow} b = 2x^{3}, \qquad (4)$$

$$\stackrel{\rightarrow}{\Rightarrow} \Delta = -16(4a^{3} + 27b^{2})$$

$$\stackrel{(1),(4)}{\Leftrightarrow} = -16(4(-3x^{2})^{3} + 27(2x^{3})^{2})$$

$$= -16(4(-27)x^{6} + 27(4x^{6}))$$

$$= 0.$$

This is a contradiction to the assumption. Hence E(K) has no singular points. " \Leftarrow " E(K) has no singular points Assumption: With $\Delta = 0$ it follows $4a^3 + 27b^2 = 0$, as char $K \neq 2$. With Cardano's method of solving cubic functions of the form $X^3 + aX + b = 0$ there is a multiple zero x (of degree 2 or 3).

Hence it follows

$$\begin{aligned} f(x,0) &= 0, \\ \frac{\delta f}{\delta Y} \Big|_{(x,0)} &= 2 \cdot 0 = 0 \text{ and} \\ \frac{\delta f}{\delta X} &= 0 \text{ as x is a multiple zero.} \end{aligned}$$

From (3), (x, 0) is a singularity. This is a contradiction to the assumption. Thus $\Delta \neq 0$.

Remarks: The special cases for char K = 2, 3 are

char K = 2: The discriminant is $\Delta = 0$ for any elliptic curve.

Find an elliptic curve, where no singular points exist, then the claim does not hold: From (1) it follows $a \equiv x^2$. Inserting this into (2) implies:

$$0 = y^{2} = x^{3} + ax + b \equiv x^{3} + x^{3} + b \equiv b \Rightarrow b = 0.$$

Choose b = 1 then no singular points exist, but $\Delta = 0$.

char K = 3: Then the discriminant is $\Delta = 2a^3$. If a = 0 is chosen, then $\Delta = 0$.

Find an elliptic curve, where no singular points exist, then the claim does not hold: From (1) and (2) it follows that a = 0 and y = 0 hold for a singular point. Choose the elliptic curve $E: Y^2 = X^3 + 1$, $y = 0 \Rightarrow y^2 = 0 \Rightarrow \exists x \text{ with } 0 = x^3 + 1 \Rightarrow x^3 = 2$ which is not possible. Consequently, no singular points exist, but $\Delta = 0$.