Homework 12 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 24.01.2012

Solution to Exercise 35.

RWITH AACHEI

Given is an elliptic curve $E: Y^2 = X^3 + aX + b$ over a field K with char $K \neq 2, 3$ (The field is $K = \mathbb{F}_{p^m}$, p is a prime number with $p > 3$ and $m \in \mathbb{N}$). The elliptic curve can be rewritten as a function of X and Y as

$$
f(X, Y) = Y^2 - X^3 - aX - b
$$

with the discriminant $\Delta = -16(4a^3 + 27b^2)$. For the derivatives of f in X and Y it holds

$$
\frac{\delta f}{\delta X} = -3X^2 - a = 0 \Leftrightarrow a = -3X^2 \text{ and}
$$
 (1)

$$
\frac{\delta f}{\delta Y} = 2Y = 0 \stackrel{\text{char} K \neq 2}{\Leftrightarrow} Y = 0.
$$
 (2)

Note that (1) is equivalent to $a \equiv 0$ indepedent of X, if char $K = 3$.

The definition for a *singular point* of f is given as

$$
P = (x, y) \in E(K) \text{ singular} \Leftrightarrow \frac{\delta f}{\delta X} \bigg|_{P} = 0 \wedge \frac{\delta f}{\delta Y} \bigg|_{P} = 0. \tag{3}
$$

Claim: $\Delta \neq 0 \Leftrightarrow E(K)$ has no singular points.

Proof:

 $Assumption:$ There exists a singular point $(x, y) \in E(K)$. Then we get \Rightarrow " Let $\Delta \neq 0$

$$
y^{2} = x^{3} + ax + b
$$

\n
$$
(1),(2)
$$
\n
$$
b = 2x^{3},
$$
\n
$$
\Rightarrow \Delta = -16(4a^{3} + 27b^{2})
$$

\n
$$
(1),(4)
$$
\n
$$
= -16(4(-3x^{2})^{3} + 27(2x^{3})^{2})
$$
\n
$$
= -16(4(-27)x^{6} + 27(4x^{6}))
$$
\n
$$
= 0.
$$
\n(4)

This is a contradiction to the assumption. Hence $E(K)$ has no singular points. $,\Leftarrow$ " $E(K)$ has no singular points Assumption: With $\Delta = 0$ it follows $4a^3 + 27b^2 = 0$, as char $K \neq 2$.

With Cardano's method of solving cubic functions of the form $X^3 + aX + b = 0$ there is a multiple zero x (of degree 2 or 3).

Hence it follows

$$
f(x, 0) = 0,
$$

\n
$$
\frac{\delta f}{\delta Y}\Big|_{(x,0)} = 2 \cdot 0 = 0
$$
 and
\n
$$
\frac{\delta f}{\delta X} = 0
$$
 as x is a multiple zero.

From (3), $(x, 0)$ is a singularity. This is a contradiction to the assumption. Thus $\Delta \neq 0$. \Box

Remarks: The special cases for char $K = 2, 3$ are

char $K = 2$: The discriminant is $\Delta = 0$ for any elliptic curve.

Find an elliptic curve, where no singular points exist, then the claim does not hold: From (1) it follows $a \equiv x^2$. Inserting this into (2) implies:

$$
0 = y^2 = x^3 + ax + b \equiv x^3 + x^3 + b \equiv b \Rightarrow b = 0.
$$

Choose $b = 1$ then no singular points exist, but $\Delta = 0$.

char K = 3: Then the discriminant is $\Delta = 2a^3$. If $a = 0$ is chosen, then $\Delta = 0$.

Find an elliptic curve, where no singular points exist, then the claim does not hold: From (1) and (2) it follows that $a = 0$ and $y = 0$ hold for a singular point. Choose the elliptic curve $E: Y^2 = X^3 + 1, y = 0 \Rightarrow y^2 = 0 \Rightarrow \exists x \text{ with } 0 = x^3 + 1 \Rightarrow x^3 = 2$ which is not possible. Consequently, no singular points exist, but $\Delta = 0$.