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Exercise 26.

There exist many variations of the ElGamal signature scheme which do no compute the
signing equation as s = k−1(h(m)− xr) mod (p− 1).

(a) Consider the signing equation s = x−1(h(m)− kr) mod (p− 1). Show that
ah(m) ≡ ysrr (mod p) is a valid verification procedure.

(b) Consider the signing equation s = xh(m) + kr mod (p− 1). Propose a valid
verification procedure.

(c) Consider the signing equation s = xr + kh(m) mod (p− 1). Propose a valid
verification procedure.

Exercise 27.

Consider the Digital Signature Algorithm (DSA) using artificially small numbers. For the
public key use p = 27583, q = 4597, a = 504, y = 23374. For the private key use x = 1860
and the random secret number k = 1773.

(a) Sign the message with the hash value h(m) = 18723 and verify the signature.

Exercise 28.

Consider the parameter generation algorithm of DSA. It provides a prime 2159 < q < 2160

and an integer 0 ≤ t ≤ 8 such that for prime p, 2511+64t < p < 2512+64t and q | p− 1 holds.

The following scheme is given:

(1) Select a random g ∈ Z∗
p

(2) Compute a = g
p−1
q mod p

(3) If a = 1, go to label (1) else return a

(a) Prove that a is a generator of the cyclic subgroup of order q in Z∗
p.


