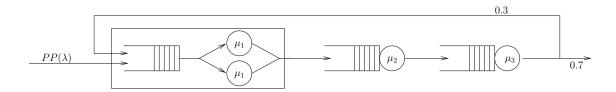


10. Übung zu Kommunikationsnetze: Analyse und Leistungsbewertung


Prof. Dr. Anke Schmeink, Michael Reyer, Alper Tokel 29.06.2015

Aufgabe 1. Anforderungen, die gemäß einem Poisson-Prozess mit Intensität $\lambda>0$ an einem Server-Cluster ankommen, werden zunächst mit Wahrscheinlichkeit α bzw. $1-\alpha$ auf Server 1 bzw. 2 verteilt und dort bearbeitet. Nach der Bearbeitung wird das Ergebnis an einen dritten Server weitergeleitet. Jeweils mit Wahrscheinlichkeit $\varepsilon/2>0$ werden die Aufträge anschließend an einen der ersten beiden Server zurückgegeben. Mit Wahrscheinlichkeit $1-\varepsilon$ verlassen die Anforderungen das Netz. Die Server 1, 2 und 3 sind jeweils M/M/1-Systeme mit Bedienraten μ_1 , μ_2 und μ_3 , jeweils größer Null. Das System kann durch das folgende offene Jackson-Netz beschrieben werden.

- a) Geben Sie den Zustandsraum und die Routing-Matrix des Jackson-Netzes an.
- b) Wann existiert eine stationäre Verteilung und wie lautet diese?
- c) Wie muss α gewählt werden, damit im stationären Zustand die mittlere Gesamtverweilzeit an Server 1 und Server 2 gleich ist?

Aufgabe 2. Betrachten Sie das folgende Jackson-Netzwerk:

Die erste Station besteht aus zwei Servern, die jeweils exponentialverteile Bedienzeiten mit Parameter $\mu_1 > 0$ haben. Die Bedienintensitäten sind also $\mu_1(1) = \mu_1$ und $\mu_1(l) = 2\mu_1$ für $l \geq 2$. Weiter seien $\mu_2 > 0$ und $\mu_3 > 0$.

- a) Wie lautet die Routingmatrix?
- b) Bestimmen Sie den Zustandsraum.
- c) Wann existiert eine stationäre Verteilung?

Nehmen Sie nun an, dass $\mu_1 = \mu_2 = 2$, $\mu_3 = 5$ und $\lambda = \frac{1}{3}$.

d) Wie lautet die stationäre Verteilung?