Lehrstuhl für Theoretische Informationstechnik

Homework 8 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe 13.06.2012

Exercise 1. (norm reformulation) Linear optimization problems are convex optimization problems for which the objective function and all constraint functions are affine. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ be given. Recall that for $x \in \mathbb{R}^n$,

$$||\boldsymbol{x}||_{\infty} = \max_{i=1,...,n} |x_i|$$
 and $||\boldsymbol{x}||_1 = \sum_{i=1}^n |x_i|$

holds. Find an equivalent linear formulation for the following optimization problems.

a) minimize $||Ax - b||_{\infty}$

RNNTHAACHE

- **b)** minimize $||Ax b||_1$
- c) minimize $||Ax b||_1$ subject to $||x||_{\infty} \leq 1$
- d) minimize $||\boldsymbol{x}||_1$ subject to $||\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}||_{\infty} \leq 1$
- e) minimize $||Ax b||_1 + ||x||_{\infty}$

Exercise 2. (Lagrangian and dual function) Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$

with optimization variable $x \in \mathbb{R}$.

- a) Plot the objective function. Describe the feasible set and find the optimizer x^* and the optimal value p^* .
- **b)** Compute the Lagrangian $L(x, \lambda)$ and plot it (as a function of x) for $\lambda \in \{1, 2, 3\}$.
- c) Plot the Lagrange dual function $g(\lambda) = \inf_x L(x, \lambda)$. Verify that the lower bound property $p^* \ge g(\lambda)$ holds.