Homework 9 in Optimization in Engineering

Prof. Dr. Rudolf Mathar, Simon Görtzen, Markus Rothe20.06.2012

Exercise 1. (dual problem bounds) For the following optimization problems with optimization variable $x \in \mathbb{R}^2$, compute the dual problem and the maximum lower bound d^* for the optimal value p^* .

a)

RNTHAACHE

minimize $2x_1^2 + 8x_2^2$ subject to $3x_1 + 6x_2 = 10$

b)

$$\begin{array}{ll} \text{maximize} & 2x_1x_2\\ \text{subject to} & x_1^2 + x_2^2 = 1 \end{array}$$

Remark: Convert problem b) into a minimization problem first.

Exercise 2. (geometric interpretation of duality) For the optimization problems below, sketch the two sets

$$\mathcal{G} = \{(u,t) \mid \exists x \in \mathcal{D}, f(x) = t, g(x) = u\} \text{ and}$$
$$\mathcal{A} = \{(u,t) \mid \exists x \in \mathcal{D}, f(x) \le t, g(x) \le u\}.$$

Form the dual problem, solve both the primal and the dual problem, and answer the following three questions: Is the problem convex? Is *Slater's constraint qualification* satisfied? Does strong duality hold?

Remark: For problems a) to e), the domain is $\mathcal{D} = \mathbb{R}$.

- a) minimize x subject to $x^2 \leq 1$.
- **b)** minimize x subject to $x^2 \leq 0$.
- c) minimize x subject to $|x| \leq 0$.
- d) minimize x subject to $\Gamma(x) \leq 0$, with

$$\Gamma(x) = \begin{cases} -x+2, & 1 \le x \\ x, & -1 \le x \le 1 \\ -x-2, & x \le -1. \end{cases}$$

- e) minimize x^3 subject to $-x + 1 \le 0$.
- **f**) minimize x^3 subject to $-x + 1 \leq 0$ with domain $\mathcal{D} = \mathbb{R}_{>0}$.