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Log-normal Fading
Well established model for distance dependent average power
attenuation:

Pr (d) = Pr (d0)
( d

d0

)−γ
, 2 ≤ γ ≤ 5,

d0 reference distance.
Equivalently, path loss in dB

L(d) = L(d0) + 10 γ log
d

d0

Table of typical values:

Propagation environment γ
Free space 2
Ground-wave reflection 4
Urban cellular radio 2.7 - 3.5
Shadowed cellular radio 3 - 5
In-building line-of-sight 1.6 - 1.8
Obstructed in-building 4 - 6
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Log-normal Fading
Additional multiplicative random effects:

Pr (d) = Pr (d0)
( d

d0

)−γ N∏

i=1

Xi .

Equivalently, for the path loss in dB

L(d) = L(d0) + 10 γ log
d

d0
+ 10

N∑

i=1

logXi

Gaussian approximation, X = 10
∑N

i=1 logXi ∼ N(0, σ2):

L(d) = L(d0) + 10 γ log
d

d0
+ X (dB)

with

fX (x) =
1√

2π σ
e−

x2

2σ2

σ2 measured in dB. From practical measurement σ2 ∈ [4, 12],
typically σ2 = 8dB.
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Log-normal Fading
Set the multiplicative random fading

Y =
N∏

i=1

Xi = 10X/10

If X ∼ N(0, σ2), the pdf of Y is

fY (y) =
10

ln 10 ·
√

2π σy
exp

(
− (10 log y)2

2σ2

)
, y ≥ 0.

I The distribution of Y is called log-normal distribution.

I Hence, Y is log-normally distributed since logY is normallly
distributed.

I A more general form: Let X ∼ N(µ, σ2), Y = eX . Then

fY (y) =
1

y
√

2π σ
exp

(
− (ln y − µ)2

2σ2

)
, y > 0.

Demonstrated on whiteboard.
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Scattering Model

ϑi

v

Doppler shift for scatterer i : Di = + f
c v cos θi

No direct line of sight, only reflected signals are received.
Total received signal for n scatterers/reflectors of an unmodulated
signal s(t) = e j 2πft :

r(t) =
n∑

i=1

Aie
j
[

2πf (t+ vt
c cos θi )+Φi

]

Ai : random amplitudes Φi : random phase shifts
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Total received signal for n scatterers/reflectors:

r(t) =
n∑

i=1

Aie
j
[

2πf (t+ vt
c cos θi )+Φi

]

Assumptions:

Φi ∼ R[0, 2π] Random phase shifts due to reflection and path
length, uniformly distributed over [0, 2π].

Ai Random amplitudes,
identically distributed random variables

E (A2
i ) = σ2

n implies
∑

i E (A2
i ) = σ2 (average received power)

A1, . . . ,An,
Φ1, . . . ,Φn jointly stochastically independent
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Scattering Model (ctd)

With
ci = 2πf

v

c
cos θi

write the received signal as

r(t) = e j 2πft
n∑

i=1

Aie
j
[
ci t+Φi

]

= e j 2πft
( n∑

i=1

Ai cos(ci t + Φi )

︸ ︷︷ ︸
X (t)

+j
n∑

i=1

Ai sin(ci t + Φi )

︸ ︷︷ ︸
Y (t)

)

= e j 2πft
(
X (t) + jY (t)

)
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Scattering Model (ctd)
Fix t in X (t) and Y (t).
Facts

I cos(ci t + Φi ) and cos(Φi ) have the same distribution, likewise

I sin(ci t + Φi ) and sin(Φi ) have the same distribution,

I E(cos Φi ) = E(sin Φi ) = 0

Hence

E
(√

nAi cos(ci t + Φi )
)

= 0

E
(
nA2

i cos2(ci t + Φi )
)

= σ2 E(cos2(Φ)
)

=
σ2

2
and

Var
(√

nAi cos(ci t + Φi )
)

=
σ2

2

By the Central Limit Theorem (CLT)

X (t) =
n∑

i=1

Ai cos(ci t+Φi ) =
1√
n

n∑

i=1

√
nAi cos(ci t+Φi )

as∼ N
(
0,
σ2

2

)
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Scattering Model (ctd)

Analogously, the same holds for Y (t). Hence

X (t)
as∼ N

(
0,
σ2

2

)
and Y (t)

as∼ N
(
0,
σ2

2

)

Moreover, X (t) and Y (t) are uncorrelated, since

E
[(∑

i

Ai cos(ci t + Φi )
)(∑

k

Ak sin(ckt + Φk

)]

=
∑

i,k

E
[
AiAk cos(ci t + Φi ) sin(ckt + Φk)

]

=
∑

i

E
[
A2
i cos(ci t + Φi ) sin(ci t + Φi )︸ ︷︷ ︸

= 1
2 sin(2(ci t+Φi ))

]

=
∑

i

σ2

2n
E
[

sin(2(ci t + Φi ))
]

= 0
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In summary,
r(t) = e j 2πft

(
X (t) + jY (t)

)

with X (t),Y (t) i.i.d. ∼ N(0, σ
2

2 ).

The signal at time t is hence

I randomly attenuated by

R =
√
X (t)2 + Y (t)2

I randomly shifted in phase by

Φ = ∠{X (t) + jY (t)}.

Problem: What is the joint distribution of R and Φ?
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Interlude: Transformation of Random Vectors

Let X ∈ Rn be a random vector with density fX(x) such that
fX(x) > 0 for all x ∈M, M⊆ Rn an open set.

T : Rn → Rn an injective transformation such that

J(x) =
∣∣∣
(∂Ti

∂xj

)
1≤i,j≤n

∣∣∣ > 0 for all x ∈M.

Then Y = T (X) has a density

fY(y) =
1∣∣J(x)
T−1(y)

∣∣ fX
(
T−1(y)

)

=
∣∣J̃(y)

∣∣ fX
(
T−1(y)

)
, y ∈ T (M),

where J̃(y) =
(
∂T−1

i

∂yj

)
1≤i,j≤n

.
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Back to
(
X (t) + jY (t)

)
, suppress t, set τ 2 = σ2/2.

Joint density

f(X ,Y )(x , y) =
1√
2πτ

e−
x2

2τ2
1√
2πτ

e−
y2

2τ2

Transformation to polar coordinates:

(r , ϕ) = T (x , y), with r =
√
x2 + y2, ϕ = ∠(x , y)

Inverse transformation:

T−1(r , ϕ) = (r cosϕ, r sinϕ), r > 0, 0 < ϕ ≤ 2π

Jacobian of the inverse:

∣∣J̃(r , ϕ)
∣∣ = |r |
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By the density transformation theorem:

f(R,Φ)(r , ϕ) = r
1

2πτ 2
e−

r2cos2ϕ+r2 sin2 ϕ

2τ2 , 0 < r , 0 < ϕ ≤ 2π

=
r

τ 2
e−

r2

2τ2 I(0,∞)(r)
︸ ︷︷ ︸

∼Ray(τ 2)

· 1

2π
I(0,2π](ϕ)

︸ ︷︷ ︸
∼U(0,2π)

Hence, in
r(t) = e j 2πft

(
X (t) + jY (t)

)

the amplitude R(t) and phase Φ(t) of
(
X (t) + jY (t)

)
are

stochastically independent random variables with densities

fR(r) =
r

τ 2
e−

r2

2τ2 , r > 0 (Rayleigh distribution)

fΦ(ϕ) =
1

2π
, 0 < ϕ ≤ 2π (uniform distribution)
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Plot of different Rayleigh densities
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, τ 2 = 1, 2, 4, 9
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Note that
Z = R2 with R ∼ Ray(τ 2)

is exponentially distributed with density

fZ (z) =
1

2τ 2
e−z/2τ 2

, z > 0

Hence, the instantaneous power Z = R2

R2 = |X + jY |2 = X 2 + Y 2

of a Rayleigh fading signal is exponentially distributed with
parameter 1

2τ 2 = 1
σ2 , σ2 being the expected receive power.

17



Wireless Channel
Modeling

and Propagation
Effects

Rudolf Mathar

Statistical Channel
Modeling

Log-normal Fading

Scattering Model

Rayleigh Fading

Rayleigh Fading Process

Rice Fading

Rayleigh Fading Process

Recall the fading process over time t ∈ R:

r(t) = e j2πft
( n∑

i=1

Ai cos(ci t + Φi )

︸ ︷︷ ︸
X (t)

+j
n∑

i=1

Ai sin(ci t + Φi )

︸ ︷︷ ︸
Y (t)

)

with ci = 2πf v
c cos θi . From the above

E
(
X (t)

)
= E

(
Y (t)

)
= 0 for all t

E
(
X 2(t)

)
= E

(
Y 2(t)

)
=
σ2

2
for all t

Cov
(
X (t1),Y (t2)

)
= 0 for all t1, t2

Define the autocorrelation function of X (t)

RXX (τ) = E
(
X (t)X (t + τ)

)
= Cov

(
X (t),X (t + τ)

)
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Autocorrelation function:

RXX (τ) = E
(
(X (t)X (t + τ)

)

= E
(∑

i,k

AiAk cos(ci t + Φi ) cos(ck(t + τ) + Φk)
)

= E
(∑

i

A2
i cos(ci t + Φi ) cos(ci (t + τ) + Φi )

)

=
1

2

∑

i

E
(
A2
i

)
E
(

cos(ciτ) + cos(2ci t + ciτ + 2Φi )
)

=
σ2

2n

∑

i

cos
(
2πf

v

c
τ cos θi

)

where we have used cosα cosβ = 1
2 [cos(α− β) + cos(α + β)].
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Assume furthermore that θi ∼ R(0, 2π) is stochastically
independent of Ai and Φi , and uniformly distributed over [0, 2π].
Then

RXX (τ) =
σ2

2

1

2π

∫ 2π

0

cos
(
2πf

v

c
τ cos θ

)
dθ

=
σ2

2

1

π

∫ π

0

cos
(
2πf

v

c
τ cos θ

)
dθ

=
σ2

2
Re
(
J0(2πf

v

c
τ)
)

=
σ2

2
Re
(
J0(2π

v

λ
τ)
)

=
σ2

2
Re
(
J0(2πfDτ)

)

where fD = v/λ the maximum Doppler shift and

J0(x) =
1

π

∫ π

0

e−j x cos θdθ

denotes the zeroth order Bessel function of the first kind.
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Plot of Re{J0(2πfDτ)} as a function of fDτ :
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We see that
RXX (τ) = 0, if fDτ ≈ 0.4.

Conclusion: the signal decorrelates if vτ = 0.4λ = approximately a
distance of one half wavelength.
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Rayleigh Fading Process (ctd.)
The power spectral density of X (t) is given by

F
(
RXX

)
(f ) =

{
σ2

πfD
1√

1−(f /fD)2
, if |f | ≤ fD

0, otherwise

Graph of F
(
RXX

)
(f ) for fD = 1, σ2 = 1:

 0

 0.5
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 2

−1 −0.5  0  0.5  1

−fD fD
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Remark: Exactly the same goes through for the imaginary part
Y (t) of

r(t) = e j 2πft
(
X (t) + jY (t)

)
,

so

RYY (τ) =
σ2

2
Re
(
J0(2πfDτ)

)

and

F
(
RYY

)
(f ) =

{
σ2

πfD
1√

1−(f /fD)2
, if |f | ≤ fD

0, otherwise
.

Furthermore, the processes {X (t)} and {Y (t)} are uncorrelated.
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Recall:

X ,Y i.i.d. ∼ N(0, τ 2) =⇒
√

X 2 + Y 2 ∼ Ray(τ 2)

This models the case with no LOS.

If additionally there is a LOS path, then

X ,Y stochastically independent, X ∼ N(µ1, τ
2), Y ∼ N(µ2, τ

2).

In this case, R =
√
X 2 + Y 2 is Rician distributed with density

fR(r) =
r

τ 2
exp

(
− r2 + µ2

2τ 2

)
I0
( rµ
τ 2

)
, r > 0,

where

µ =
√
µ2

1 + µ2
2, and I0(x) =

1

π

∫ π

0

ex cosϑdϑ

denotes the modified Bessel function of zeroth order.
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Rician densities (from Wikipedia) (σ =̂ τ , v =̂µ). Note that
v = µ = 0 corresponds to Rayleigh fading.
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