

4. Übung zur Theoretischen Informationstechnik I Prof. Dr. Rudolf Mathar, Fabian Altenbach, Michael Reyer

13.11.2009

Aufgabe 1. Bestimmen Sie Erwartungswert und Varianz folgender Zufallsvariablen X:

- a) X sei Poisson-verteilt, d.h. $X \sim \text{Poi}(\lambda), \lambda > 0$.
 - **Hinweis:** Die Reihenentwicklung der Exponentialfunktion lautet $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, wobei 0! = 1 gilt.
- **b)** X sei exponentialverteilt, d.h. $X \sim \text{Exp}(\lambda), \lambda > 0$.

Aufgabe 2.

- a) Es seien X und Y zwei nicht weiter spezifizierte Zufallsvariablen. Zeigen Sie die Gültigkeit der aus Proposition 2.3.9 d) bekannten Beziehungen
 - i) $Var(X) = E[(X E(X))^2] = E(X^2) [E(X)]^2$
 - ii) Cov(X, Y) = E[(X E(X))(Y E(Y))] = E(XY) E(X)E(Y).
- b) Die Kovarianzmatrix ist definiert als $\mathbf{C} = (\operatorname{Cov}(X_i, X_j))_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$, wobei alle $(X_i)_{1 \leq i \leq n}$ Zufallsvariablen sind. Geben Sie diese Matrix für den n-dimensionalen Fall explizit an. Verwenden sie dafür die in Aufgabenteil \mathbf{a}) angegebenen Beziehungen. Ist die Kovarianzmatrix symmetrisch?
- c) Ein zweidimensional normalverteilter Zufallsvektor $\mathbf{X} = (X_1, X_2)'$ werde durch folgende Dichte beschrieben

$$f_{\mathbf{X}}(x_1, x_2) = \frac{1}{\pi\sqrt{3}} \exp\left(-\frac{2}{3}(x_1^2 - x_1x_2 + x_2^2)\right).$$

Berechnen Sie den Erwartungswertvektor μ sowie die Kovarianzmatrix \mathbf{C} des Zufallsvektors \mathbf{X} . Gehen Sie dabei davon aus, dass die Matrix \mathbf{C} invertierbar ist und $\det(\mathbf{C}) > 0$ gilt.

- d) Wenn ein Zufallsvektor $\mathbf{X} = (X_1, X_2)'$ zweidimensional normalverteilt ist, dann folgt daraus jeweils die eindimensionale Normalverteilung der Zufallsvariablen X_1 und X_2 . Geben Sie auf Basis dieser Beziehung die Randverteilungsdichten $f_{X_1}(x_1)$ und $f_{X_2}(x_2)$ an.
- e) Lässt sich umgekehrt aus der Kenntnis der eindimensionalen Randverteilungsdichten auf die *n*-dimensionale gemeinsame Verteilungsdichte schließen?