



## 3. Übung zur Theoretischen Informationstechnik II Prof. Dr. Rudolf Mathar, Fabian Altenbach, Michael Reyer 06.05.2010

Aufgabe 1. Ein Übertragungssystem sei gegeben durch

$$Y = X + Z$$
.

Die Eingabe X nehme die Werte  $x_1 = A$  und  $x_2 = -A$  jeweils mit der Wahrscheinlichkeit 1/2 an und für das Rauschen gelte  $Z \sim N(0,1)$ . Zur Herleitung der Transinformation zwischen X und Y gehen Sie wie folgt vor.

a) Zeigen Sie

$$f_{Y|X}(y|X=x) = f_Z(y-x).$$

b) Zeigen Sie

$$H(Y|X) = H(Z).$$

- c) Berechnen Sie  $f_Y$  in Abhängigkeit von  $f_Z$ .
- d) Sei  $\varphi_i = f_Z(y x_i)$ . Zeigen Sie

$$I(X;Y) = D\left(\varphi_1 \left\| \frac{1}{2} \sum_{i=1}^{2} \varphi_i \right).$$

e) Betten Sie diese Aufgabe in Bsp. 4.1.1 der Vorlesung ein und interpretieren Sie das Ergebnis.

**Aufgabe 2.** Sei  $Y = X + Z_1 + Z_2$  ein additiver Gaußkanal mit der Leistungsbeschränkung  $E(X^2) \leq L$  und den Rauschtermen  $Z_1 \sim N(0, \sigma_1^2)$  und  $Z_2 \sim N(0, \sigma_2^2)$ . Die Zufallsvariablen  $X, Z_1$  und  $Z_2$  seien stochastisch unabhängig.

- a) Wie groß ist die Kapazität des Kanals und für welche Eingangsverteilung wird sie erreicht?
- b) Wie groß muss L mindestens sein, damit für die Rauschleistungen  $\sigma_1^2 = 2$  bzw.  $\sigma_2^2 = 3$  die Kapazität C = 1 erreicht werden kann?