

1. Übung zur Theoretischen Informationstechnik II Prof. Dr.-Ing. Anke Schmeink, Simon Görtzen, Christoph Schmitz, Ehsan Zandi 08.04.2014

Aufgabe 1. Bestimmen Sie die differentielle Entropie der folgenden absolut-stetigen Zufallsvariablen.

a) X ist exponentialverteilt mit Parameter $\lambda > 0$, d.h.

$$f(x) = \lambda e^{-\lambda x}, x \ge 0.$$

b) X ist Laplace-verteilt mit Parameter $\lambda > 0$, d.h.

$$f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}, x \in \mathbb{R}.$$

c) X = Y + Z ist die Summe der stochastisch unabhängigen Größen $Y \sim N(\mu_1, \sigma_1^2)$ und $Z \sim N(\mu_2, \sigma_2^2)$.

Aufgabe 2. Die folgenden Beziehungen gelten für die Entropie von diskreten Zufallsvariablen. Zeigen Sie, dass sie für die differentielle Entropie nicht gelten, indem Sie jeweils ein Gegenbeispiel angeben.

- **a)** $H(X) \ge 0$,
- $\mathbf{b)} \ \mathrm{H}(T(X)) \leq \mathrm{H}(X),$
- c) $H(X+Y) \leq H(X,Y)$,
- **d)** $H(X + Y) \le H(X) + H(Y)$.

Hinweise:

Zu a) und b): Für $X \sim R(0,1)$ und a > 0 gilt $aX \sim R(0,a)$.

Zu c) und d): Für X, Y s.u. gilt H(X, Y) = H(X) + H(Y). Wählen Sie für ein Gegenbeispiel X und Y so, dass H(X + Y) einfach zu bestimmen ist.

Bitte wenden!

Aufgabe 3. Gegeben sei eine BPSK-Modulation mit Amplituden $\mu > 0$ und die Symbole seien gleichverteilt, d.h. mit Wahrscheinlichkeit $\frac{1}{2}$ wird entweder μ oder $-\mu$ gesendet. Das Signal X werde bei der Übertragung von einer additiven, gleichverteilten Rauschleistung auf dem Intervall $\left[-\frac{1}{2},\frac{1}{2}\right]$ gestört, also gilt Y = X + N mit $N \sim R\left(-\frac{1}{2},\frac{1}{2}\right)$ und X und N seien stochastisch unabhängig.

- a) Geben Sie die Dichte f_Y an.
- b) Berechnen Sie die differentielle Entropie von f_Y .
- c) Zeichnen Sie die differentielle Entropie von f_Y als Funktion von μ und interpretieren Sie das Ergebnis.