

7. Übung zur Theoretischen Informationstechnik II Prof. Dr.-Ing. Anke Schmeink, Simon Görtzen, Christoph Schmitz, Ehsan Zandi 27.05.2014

Aufgabe 1. Bestimmen Sie die Transinformation I(X, Y) für einen MIMO-Kanal

$$Y = HX + Z$$

mit $\mathbf{X} \sim \text{SCN}(0, \frac{L}{t}\mathbf{I}_t), \, \mathbf{Z} \sim \text{SCN}(0, \sigma^2\mathbf{I}_r), \, \mathbf{X}, \, \mathbf{Z} \text{ s.u. und } \mathbf{H} \in \mathbb{C}^{r \times t} \text{ fest.}$

Aufgabe 2. Gegeben sei ein MIMO-Kanal mit einer Empfangsantenne, zwei Sendeantennen und mit Ausgabe $Y = \mathbf{H}(X_1, X_1)' + Z$. Für die Pfadgewinne h_{11}, h_{12} gelte $h_{11}, h_{12} \sim \text{SCN}(0, \sigma^2)$ stochastisch unabhängig mit $\sigma^2 > 0$. Die Sendeleistung werde auf beide Antennen gleichmäßig aufgeteilt.

Bestimmen Sie einen eindimensionale Kanal mit Ausgabe $\tilde{Y} = h\tilde{X} + Z$ mit gleicher Gesamtsendeleistung, der äquivalent ist, d.h. dass gilt $Y \sim \tilde{Y}$. Welche Verteilung besitzt h?

Aufgabe 3. Berechnen Sie näherungsweise die Kapazität eines MIMO-Kanals für die beiden Fälle

- a) $t \gg r$
- **b**) $r \gg t$

Hinweis: Betrachten Sie zunächst $r \ge 1$ und $t \to \infty$ und vertauschen Sie für **b**) die Rollen von r und t.